

UPPER CLEAR CREEK WATERSHED PLAN

Revised Final Report – 319 Grant #OE FAA WQC05000024 (With Incorporated Revisions 1 through 3)

Prepared For:

Upper Clear Creek Watershed Association P.O. Box 3058 Idaho Springs, CO 80452

On Behalf of:

Colorado Department of Public Health & Environment Water Quality Control Division, and U.S. Environmental Protection Agency

Prepared by:

TDS Consulting Inc. 595 West Meadow Road Evergreen, Colorado 80439-9745

TDS Project Number 0405M

August 16, 2006

Technical Memorandum

Date:	August 16, 2006	
To:	Anne Beierle, UCCWA Chair	e-Mail: abeierle@ci.golden.co.us
Copies:	Katie Fendel, LRCWE Chris Crouse, UCCWA Sect/Treas	e-Mail: <u>fendel@lrcwe.com</u> e-Mail: <u>uccwaoffice@clearcreekwireless.com</u>
From:	Tim Steele, TDS Consulting Inc.	
Subject:	Revised Final Report, Upper Clear revisions 1 through 3, UCCWA 319 TDS Project No. 0405M	ar Creek Watershed Plan – Phase-I Tasks with Grant #OE FAA WQC05000024

As discussed between Chris Crouse and Bill McKee, the subject revised final report text and Appendix E (WORD files) are attached, incorporating the three (3) revisions to the previous "final" report dated September 27, 2005. This text file is provided to Chris Crouse, Project Administrator, along with files for the title sheet, figures, and tables, and appendices. My understanding is that Chris will convert the various parts of the UCC Watershed Plan into a pdf file for general dissemination and use. Please give me a call or send me an e-Mail if you have questions or need additional information.

Files: UCC319/UCCWatershedPlanText(RevFinal).doc; tables, figures; and Appendix E (skeleton TMDL; separate WORD file).

Table of Contents	
Executive Summary	<u>Page</u> ES-1
Current Status & Analysis of Baseline Data Trace-Metals Data Analysis <i>(Task 1)</i> Biological Monitoring	1-1 1-1 1-5
Source Identification (Watershed-Plan Component 1) CERCLA Control Actions (Task 3) Other Nonpoint Sources & Causes of Contamination (Task 4)	2-1 2-1 2-4
Estimated TMs Load Reductions <i>(Watershed-Plan Component 2)</i> (Task 5) Analysis of TMs Load Contributions Proposed CERCLA Remediation Other Considerations Summary and Recommendations	3-1 3-1 3-3 3-6 3-7
NPS Management Measures (Watershed-Plan Component 3) NPS Load Reductions to Meet Existing WQ Standards (Task 6) NPS Control Measures (CERCLA-Related) (Task 7b) NPS Control Measures (non-CERCLA Related) (Task 7a) Other Factors to Consider Summary and Recommendations Comparison Load Reductions with Underlying WQSs (Task 8) Conceptual Plan for Future NPS Controls (Task 9)	4-1 4-1 4-4 4-6 4-6 4-7 4-10 4-13
Information/Education Component (Watershed-Plan Component 5) (Task 11)	5-1
Schedule for Implementation of NPS Management Measures (Phase II)	6-1
Interim & Measurable Milestones and Surrogate Measures (Phase II)	7-1
Criteria for Achieving Loadings Reductions (Phase II)	8-1
Monitoring Component (Watershed-Plan Component 6)	9-1
Sources of Technical and Financial Assistance (Watershed-Plan Component 4) Potential Funding Sources (Non-CERCLA NPS Control Efforts) (Task 10	10-1 0)
References	R-1

Figures

Figure 1-1 – Average D-TMs Concentrations, UCCWA Monitoring Sites Figure 1-2 – Comparison of Selected Seasonal Trace-Metals Statistics by Stream Segment

i

Table of Contents -- Continued

- Figure 1-3 Estimated Brown-Trout Populations, Mainstem Clear Creek, Fall-Season Sampling Surveys 1988-2005 (CDOW Data)
- Figure 1-4 Number of Brown Trout per Acre Without Young of the Year (>115 mm), Fall Season Sampling Surveys 2001-2004 (CDOW Data)
- Figure 1-5 Dissolved Copper vs. Average Brown-Trout Population
- Figure 1-6 Dissolved Zinc vs. Average Brown-Trout Population
- Figure 1-7 Dissolved Cadmium vs. Average Brown-Trout Population
- Figure 1-8 EPT Index vs. Trace-Metals Concentrations
- Figure 1-9 Metals Tolerance Intex vs. Trace-Metals Concentrations
- Figure 1-10 Helsenhoff Biotic Index vs. Trace-Metals Concentrations
- Figure 1-11 Macroinvertebrate Diversity vs. Trace-Metals Concentrations
- Figure 3-1 Argo-Related Trace-Metals (TMs) Loads, 4/98-12/04
- Figure 3-2 Conceptual Schematic for Estimation of TMs-Loads' Reduction through Remediation
- Figure 4-1 Ambient Conditions vs. Dissolved-Zinc Water-Quality Standards (WQSs)
- Figure 4-2 Ambient Conditions vs. Dissolved-Zinc Loads

Tables

- Table 1-1 -- Water-Quality Monitoring Sites and WQCD Stream Segments
- Table 1-2 Average POR Selected D-TMs and Hardness Concentrations
- Table 1-3 Comparison of Seasonal Stream Standards and 85th-Percentile Trace-Metals Concentrations by Stream Segment
- Table 2-1 Superfund OU4 RI/FS and ROD Updated Information on CERCLA Sources and Control Actions
- Table 2-2 Selected Water-Quality Characteristics, Mine-Impacted Source Areas
- Table 2-3 Selected Water-Quality Characteristics, Municipal Wastewater Treatment Facilities
- Table 3-1 Argo Treatment vs. Mainstem Clear Creek Trace-Metals Loads
- Table 3-2 Past, Ongoing, and Future Mine-Cleanup Sites
- Table 3-3 Source TMs Loads and Rankings
- Table 3-4 Stream Trace-Metals (TMs) Loadings
- Table 3-5 Summary of Priority Sources of TMs Loads, Period-of-Record and Seasons
- Table 3-6 -- Trace-Metals Loads Reductions, High- and Moderate-Ranked Priority Areas
- Table 4-1 Estimated Loads Reductions (Percent), Applicable Stream Stream Segments with Exceedances and for Specific Season of Year
- Table 4-2 Comparison of Ambient Water Quality vs. Currently Applicable Temporary Mods (in ug/L) with Exceedances and for Specific Season of Year
- Table 4-3 Comparison of Ambient Water Quality vs. Table Value Standards (in ug/L) with Temporary-Mod Exceedances and for Specific Season of Year
- Table 4-4 ARARs and PRGs (in ug/L) for Stream Segments 13b and 11

Table of Contents -- Concluded

Table 4-5 – Attainment of Applicable Standards, Upper Clear Creek Impaired Segments

Table 4-6 – Attainment of TVS Values, Upper Clear Creek Watershed Impaired Stream Segments

Table 4-7 – Comparison of Loads Reductions with Underlying Water-Quality Standards

Table 4-8 - Clear Creek Stream Profiles, Streamflow and Zinc

Appendices

- Appendix A Supplemental Task-1 Information Figure A-1 – Seasonality in Hardness Values, UCCWA/SLCs Sites Figure A-2 – Seasonality in Hardness Values, CDOW Sites
- Appendix B Supplemental Tasks 3 & 4 Information Mine-Site Characterization, Prioritization, and Remediation
- Appendix C Supplemental Task-5 Information and Calculations TMs Loads Reductions Table C-1 – Stream Trace-Metals (TMs) Loads [Sites CC-40 and CC-60] Table C-2 – Trace-Metals (TMs) Source Summary
- Appendix D NPS Reductions and Controls [R.L. Notes, Task 7b, in preparation? See guidance from TDS dated 2/17/05. No information nor deliverable has been received to date.]

Appendix E – Skeleton TMDL, Upper Clear Creek Watershed Selected 303(d)-Listed Segments

Appendix F -- Public Input to Conceptual NPS Control Plan (Task 11, non-Grant)

Acronyms

AMLP	abandoned mine land program (USFS)
ARAR(s)	applicable or relevant and appropriate requirement(s)
ARD	acid-rock drainage
BHCCSD	Black Hawk/Central City Sanitation District
BMP(s)	best management practice(s)
CC	Clear Creek (mainstem stream)
CCWF	Clear Creek Watershed Forum
CCWF	Clear Creek Watershed Foundation
CDLG	Colorado Division of Local Government
CDM	Camp Dresser & McKee (Superfund Site investigations)
CDMG	Colorado Division of Minerals and Geology
CDOT	Colorado Department of Transportation
CDOW	Colorado Division of Wildlife

	A avantures (acroshudad)
CDDHE	Acronyms (concluded)
CDPHE	Colorado Department of Public Health & Environment
CERCLA	Comprehensive Environmental Response, Compensation, and Liability
CCM	Act Colorado School of Mines
CSM	
CWA	Clean Water Act
EE/CA HMWMD	engineering evaluation and cost analysis Hazardous Materials & Waste Management Division (of CDPHE)
lbs/d	pound(s) per day
LRCWE	Leonard Rice Consulting Water Engineers (UCCWA library)
ug/L	micrograms per liter
mg/L	milligrams per liter
MOS	margin of safety
NFCC	North Fork Clear Creek
NPS	nonpoint source
OSCs	on-site coordinators (USFS-AMLP)
PA	preliminary assessment (USFS-AMLP)
(P)COC	(potential) contaminant of concern
PAI(s)	potentially affected interest(s)
PRG(s)	preliminary remediation goal(s)
PRP	potentially responsible party
PS(s)	point source(s)
RAO	remedial action objective
ROD	Record of Decision
SFCC	South Fork Clear Creek
SLCs	Standley Lake Cities
SOW	scope of work
SS(s)	stream segment(s)
START	Superfund Technical Assistance Response Team (USEPA)
SDWA	Safe Drinking Water Act
TM(s)	trace metal(s)
	temporary modifications (standards)
Tt-RMC	Tetra Tech – Rocky Mountain Consultants
TVS(s)	table value standard(s)
UCC	upper Clear Creek (mainstem stream or watershed)
UCCWA	Upper Clear Creek Watershed Association
US	underlying (equation-based) standard; ultimate target(s), site-specific
USACOE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
USFS	U.S. Forest Service
WFCC	West Fork Clear Creek
WQCD	Water Quality Control Division (of CDPHE)
WQS(s)	water-quality standard(s)
WTP(s)	water-treatment plant(s)
WWTP(s)	wastewater treatment plant(s)
WY	water year (beginning on October 1 and ending on September 30)
-	σ (σ σσ-σ σσ-σ σσ σ)

Upper Clear Creek Watershed Plan 319-Grant Final Report – Phase-1 Work Tasks

Executive Summary

Clear Creek supplies water to over 300,000 residents in the metropolitan Denver area. Adopted beneficial uses for these segments include aquatic-life cold-water class 1, recreation class 1a, water-supply, and agricultural uses. Ambient concentrations of trace metals adversely impact aquatic life in several of the watershed's streams, as well as potentially in drinking-water supplies downstream. The metals in watershed's streams originate primarily from nonpoint sources, including numerous abandoned or inactive mines, mine/mill tailings, and waste-rock piles located throughout the watershed. Many, but not all, of these sources have been remediated or are scheduled to undergo remediation through Superfund (CERCLA) or other funding sources.

Several stream segments (SSs) in the Clear Creek watershed are on the CDPHE's proposed 2006 303(d) list of impaired waters; most of these segments have been listed since 1998. Five of these segments are the subject of the Section-319 grant request for the upper Clear Creek watershed considered in this study report: SS 2 (mainstem Clear Creek from Silver Plume to the Argo Tunnel), SS 9a (Fall River), SS 9b (Trail Creek), SS 11 (mainstem Clear Creek from the Argo Tunnel to Farmers Highline Canal), and SS 13(b) (lower reach of North Fork Clear Creek). All but one of these stream segments (SS 9a being the exception) are listed for exceedances of the zinc (Zn) standard; segments 2, 9a, 9b, and 13b are in nonattainment of the copper (Cu) standard, and segments 9b, 11, and 13(b) exceed the cadmium (Cd) standard. The water-quality standards for these stream segments currently consist of various table value standards, site-specific standards, and/or temporary modifications, depending on the segment.

The overall goal of this Upper Clear Creek Watershed Plan is to provide a basic framework for the development of nonpoint-source controls such that currently applicable or ultimate (underlying) stream standards for key trace metals of concern can be met. This initial (Phase-I) Plan addresses five of the nine USEPA-recommended elements (called herein watershed-plan components); a subsequent study-phase is proposed to complete the Watershed Plan for remaining elements and for other water-quality variables of concern.

An extensive compilation and assessment of streamflow trace-metals data from several sources were completed in order to quantify the non-attainment of various current stream standards as well as to develop and compare conditions with seasonal (high-flow/low-flow) stream standards for the several stream segments of concern (Table 1-1). The delineation of non-attainment of the proposed seasonal standards is given in Table 1-3 and accompanying Figure 1-2.

Highlights of this Phase-I project effort for this Upper Clear Creek Watershed Plan are summarized by watershed-plan component as follows:

<u>Identification of trace-metals sources and causes that potentially need to be controlled</u>.— Fortunately, a number of technical field investigations and studies have been completed in this watershed. Through resultant data and information, the numerous sources and causes of elevated key trace-metals concentrations have been inventoried and summarized for this Plan (see Section 2 and associated tables). As a critical part of this inventory and summary, prioritization and ranking of more critical sources have been included for consideration in subsequent watershed-plan components' analyses.

<u>Estimation of trace-metals loads reductions from planned CERCLA work and additional</u> <u>NPS measures</u>.—High-priority areas identified in the watershed for consideration of remediation for achieving WQ stream-standard targets consist of the North Fork Clear Creek subwatershed and Virginia Canyon (see Section 3). Moderate-priority areas consist of the Georgetown-to-Idaho Springs area and the Silver Plume area, both along the mainstem Clear Creek (including key tributaries). Overall effective TMs loads' reduction in the mainstem Clear Creek in downstream stream-segment (SS) 11 is estimated to be more than 80 percent for Cu and in the range of 30-50 percent for Zn. Estimated removal rates for Cd are suspect, due to small source-generated loads and inability to depict relative mobility of this TM relative to Cu and Zn, that are more affected by stream-channel sediments.

<u>Needed NPS management measures needed to implement the trace-metals loads</u> <u>reductions</u>.— Further evaluation was made of NPS-management measures, with the goal of meeting existing or ultimate stream standards (Section 4). This evaluation was conducted on the basis of individual stream segments and the previously identified seasonal water-quality standards' exceedances. Given the anticipated TMs loads reductions, ambient low-flow stream standards would be attained for SS 2 (Cu; upper Clear Creek), SS 13b (Cd, Cu, and Zn; North Fork Clear Creek), and SS 11 (Zn; lower Clear Creek). Stream standards would not be achieved for SS 2 (Zn, low-flow season), SS 9a (Cu, Fall River, high-flow season), and SS 9b (Cd, Cu, and Zn, Trail Creek, highflow season). For the more-stringent ultimate (underlying) stream standards, only the Cu target for SS 2 (upper Clear Creek) would be attained, and all other standards would not be fulfilled assuming the currently planned remedial actions for reducing TMs loads (Section 4).

<u>Preliminary estimates of technical and financial (costs) assistance needed to implement</u> <u>this Plan.</u>— For the Superfund's OU4 preferred remediation alternative (4B, involving predominately the North Fork Clear Creek subwatershed), capital costs of \$11.8 million and O&M costs of nearly \$11.5 million (annualized at \$926,000/year) were estimated. Preliminary engineering-design work for high-priority components is currently proposed. For the Virginia Canyon area, remediation work is underway during the 2005 summer season. For completed remediation projects and several proposed future efforts, estimated costs were included in UCC-WAG (2001, Table B-1). Various sources of technical support and financial assistance have been inventoried (Section 10).

Enhancement of public understanding of this conceptual Plan through public meeting(s) and continued participation in selection/design of NPS implementation measures.-- A presentation overview of this Plan's findings and recommendations is planned as part of the *Clear Creek Watershed Forum* 2005 – *Creating a Sustainable Future*, scheduled for September 27, 2005. A wide audience is being sought for participating in this Forum. During work-group sessions at this Forum, the general public and various stakeholders will have the opportunity to express opinions on materials presented as well as to help to prioritize various watershed concerns. Appendix F (*pending*) of this Plan will provide details of the results of this scheduled Forum, and it will be summarized in Section 5.

Recommended TMs-related actions, based upon results documented to date in this Watershed Plan, include the following:

- Further WQ characterization of Trail Creek is warranted (Sections 1 and 3). The existing data are limited and it appears that this tributary is a significant TMs contributor to the mainstem Clear Creek (SS 2 and downstream).
- Further characterization of TMs loads contributed from a set of waste-rock piles representing a range of mineralogy, areal location, age, and other conditions. This would improve or provide a technically-sound basis for estimating TMs load reductions. Priority should be given to high-ranked areas of Virginia Canyon and the North Fork Clear Creek (Section 3). Remediation of waste-rock piles in other subwatersheds also might be considered (such as for Gilson Gulch).
- Re-evaluation of assumed TMs-loads reductions for PSs (treatment facilities) and waste-rock piles (see previous item), as well as other critical NPS areas.
- Additional monitoring-related work, including source-area site characterizations, might be considered (Section 4).
- Further evaluation of review/assessment work and TMs-reduction comparisons reported in this Plan should be made with relevant profiles developed by various Medine modeling studies (Section 4).

As was mentioned previously, this Plan currently includes only the Phase-I work tasks identified in the 319-grant award under a proposal submitted by the Upper Clear Creek Watershed Association (UCCWA) and approved under this contract by the CDPHE-WQCD. The remaining USEPA watershed-plan elements not yet addressed by this Plan should be completed; UCCWA plans to take action on including these aspects in the Plan during 2006. In addition, because this Plan focuses on stream standards and associated impaired segments involving only trace-metals concentrations, the Plan should be enhanced to address other water-resources and water-quality issues facing UCCWA and the watershed's stakeholders.

Current Status and Analysis of Baseline Data

The objective of this 319-Grant component has two aspects: (a) to compare current water quality conditions with the existing underlying water-quality standards (WQSs); and (b) to assess instream instream biological conditions versus ambient trace-metals levels for selected stream reach(es) of the upper Clear Creek watershed. These two aspects comprise 319-Grant Tasks 1 and 2, respectively. Task 2 is scheduled for completion in December 2005.

Trace-Metals Data Analysis (Task 1)

In this initial work task, existing available data for hardness and dissolved species of zinc, copper, and cadmium were used in an assessment of seasonality of the data and of a comparison of 85th-percentile values for these selected trace metals (TMs) relative to applicable stream standards. The data assessment focused on the following WQCD stream segments:

- 2 mainstem Clear Creek, Silver Plume to Argo Tunnel
- 5 West Fork Clear Creek, from Woods Creek to confluence with Clear Creek
- 9a Fall River
- 9b Trail Creek
- 11 mainstem Clear Creek, Argo Tunnel to Golden, and
- 13b North Fork Clear Creek, from BH water-supply intake to confluence with Clear Creek.

It should be noted that the original stream segment 9 was divided into two separate segments (9a and 9b, as described above), as a result of recent stream-standards deliberations (WQCC, 2004, p. 2) and to accommodate special water-quality conditions in Trail Creek. Two additional stream segments are currently listed on the CDPHE-WQCD 303(d) List:

- 3a South Fork Clear Creek, and
- 3b Leavenworth Creek.

However, water-quality conditions and compliance with applicable stream standards for these two stream segments have not been considered in this assessment at the same level of detail as for the above-named stream segments. This is because they are not included within the scope of the current 319 grant, nor do they involve WWTPs that are considered point sources of water-quality constituents of concern. Rather, they are in the upper part of the watershed and involve mining-related TMs sources. Finally, other trace-metals species included on the currently applicable 303(d) List are not included, such as dissolved manganese, dissolved lead, and total iron. This is in adherence to the 319-Grant scope of work (SOW) (UCCWA, 2004b).

Available Water-Quality and Streamflow Data

Existing and available water-quality and associated streamflow data were used for this assessment. Period-of-record (POR) data at 26 sampling locations through 2004 from the following monitoring programs were considered and used (Table 1.1):

- 1. UCCWA/SLCs monitoring program since 2/94 up to 17 sites (CC-xx), of which 11 sites characterized the stream segments of interest (two other sites for SSs 3a and 3b were of secondary interest);
- 2. CDOW monitoring program 12 sites (09xx) involving three of the stream segments;
- 3. BHCCSD monitoring program, starting in 12/00 two NFCC sites; and
- 4. CDPHE site-specific investigation for Trail Creek one year of data at one site (5673).

For the UCCWA/SLCs monitoring program, streamflows associated with discrete samples analyzed for the variables of interest have been measured or estimated through inter-station correlations (TDS project file, updated on 12/8/04). Otherwise, streamflows are not available for the water-quality data from the other three monitoring programs. Flow conditions during sampling surveys are an important consideration, in evaluating effects of hydrologic variations, both seasonally and year-to-year.

Approaches

Using the hydrologic (water-quality and streamflow) data described above, graphic and statistical analyses were made. The forms of analysis consisted of the following:

- Site-specific data-compiled average values for the available periods of record,
- An evaluation of seasonality in hardness data, accompanied by streamflows (if available);
- Aggregated-data statistics (averages, number of values, and 85th percentiles) for data from all monitoring sites combined for each stream segment; and
- Comparison of the appropriate statistics with applicable stream standards either table value standards (TVSs), temporary modifications (WQCC, 2004), or other narrative standards.

For the seasonality evaluation, most data for monitoring sites in the watershed exhibited a clear delineation into two distinct periods:

- a low-flow, high-concentration period (7 months from October through April); and
- a high-flow, relative lower concentration period (5 months from May through September).

Streamflow and/or water-quality conditions for the transition months (mostly April and October) occasionally did not fit this delineation; however, the norm was this 7-month/5-month split for most hydrologic conditions and years. Moreover, this seasonality split in general was consistent with that proposed and used for two stream segments in the watershed as part of the OU4 RI/FS investigations (Tt-RMC, 2004).

From this assessment, then water-quality statistics calculated from available monitoringsite data sets were compared with applicable stream standards.

Results

POR average TMs (and major cations and hardness) concentrations, along with average streamflows (where available) are summarized in Table 1.2. It should be noted that this compilation of average conditions includes data only for the UCCWA/SLCs sites. This compilation of averages in on a site-by-site basis. These averages are indicated graphically as in a generalized watershed profile (from an upstream (left) to downstream (right) direction) in Figure 1.1. On the right-hand side of this summary table, the two seasonal-period average streamflows and hardness concentrations are indicated. For the three TMs of interest (Cd, Cu, and Zn) to this assessment and for hardness, averages for the data from other monitoring programs have been added to the watershed stream profiles. Tributary values are inserted in between mainstem sites.

Using the results of the previous summary and considering the water-quality data for the monitoring sites besides the UCCWA/SLCs monitoring program, the seasonal patterns in hardnesses and streamflows are given in the numerous time-series plots in Appendix A (Figures A-1 for UCCWA/SLCs sites and A-2 for CDOW and BHCCSD sites).

The more useful concluding part of this data assessment then was the comparison, segment by segment, of average hardnesses and associated TMs concentrations, calculated as averages and 85th percentile values. The 85th percentile values of TMs are calculated, using the average hardness concentrations derived from the data for any given stream segment. These then are compared to the appropriate currently existing stream standards. These comparisons are given in tabular form (Table 1.3) and also in graphic form (Figure 1.2).

Discussion

The data assessment presents strong evidence in support of seasonal hardness-based standards (Appendix A). The delineation into the two seasons (7-month, low-flows/high-concentrations) and 5-month, higher-flows/lower-concentrations) may be deliberated, based upon the findings of this assessment. However, in general, average low-flow seasonal hardnesses are 50 to 100 percent higher than average higher-flow seasonal hardnesses. It is during the low-flow season that most of the exceedances of 85th-percentile values exceed applicable standards:

- Zinc, in the cases of stream segments 2, 13b, and 11 are very prominent (Figure 1.2); and
- Copper, in the cases of stream segments 2 and 13b, which are less prominent;
- Cadmium, only for stream segment 13b, with the 85th percentile (6.1 ug/L) only slightly exceeding the temporary modification (6.0 ug/L) (Table 1.3).

For the stream segments of interest, the higher-flow season comparisons, as would be expected, are fewer. Exceedances for all three TMs of concern (Cd, Cu, and Zn) occur for this season for Trail Creek (stream segment 9b); however, these exceedances are based upon quite limited data (1-year equivalent). Otherwise, Cu 85th-percentile

exceedances are noted for stream segments 9a (Fall River), and 11 (mainstem Clear Creek from Argo Tunnel to Golden).

It is noteworthy that TMs exceedances for the North Fork Clear Creek (SS 13b) occur only during the low-flow season (Table 1.3); whereas, the reverse is the case for Trail Creek (SS 9b). The situation for Trail Creek is not expected nor is it explainable at this time.

The Cu 85th-percentile values for both seasons calculated from available data for SS 11 (mainstem Clear Creek from Argo Tunnel to Golden) are within the 17-ug/L Cu chronic standard (non-TVS) applicable to this stream segment.

Some additional observations include POR time trends regarding the following may warrant some consideration in future, more detailed data assessments of TMs and associated standards:

- Increasing HRD values, especially during wintertime periods, and numerous sites; and
- Increasing pH values (shift of about 0.7 std. unit over a 11-year period) at the two lower monitoring sites for the North Fork Clear Creek (CC-45 and CC-50), based upon UCCWA/SLCs data included in the watershed's water-quality database.

Recommendations

- 1. All available water-quality data from the various sources through December 2004 have now been incorporated into the data assessment and calculation of statistics and standards.
- 2. Streamflows should be estimated at sites currently having no flow information, through installation and recording of stage levels, discharge measurements (as frequently as possible), and complemented through interstation correlations.
- 3. Additional monitoring data are recommended for Trail Creek, to evaluate in greater detail seasonality (including effects of flows) and year-to-year variability. This aspect has been included as part of the "routine" UCCWA/USEPA monitoring program during 2005.
- 4. For stream segment 11 (lower mainstem Clear Creek), the dissolved-zinc's 85th percentile (475 ug/L) exceeds the temporary modification (year-round value of 339 ug/L) for the low-flow season (Figure 1.2A), using the full period-of-record data set. However, using data only since April 1998 (beginning of Argo-adit treatment operations), the D-Zn's 85th percentile value decreases to 384 ug/L; this still exceeds the temporary modification value of 339 ug/L. Thus, this recalculation confirms that the exceedance is not driven entirely from the historical (pre-4/98) conditions reflected by the historical data and that further D-Zn load reduction is required in order to achieve this target. The load reduction is even greater to meet the underlying standard for D-Zn (TVS of 124 ug/L, based upon an average low-flow hardness concentration of 106 mg/L (using the entire period-of-record data; this value increases only slightly (109 ug/L) using only the post-4/98 data).

Biological Assessment (Task 2)

[Notes: Field investigations scheduled for September 27-28, 2005 (Tammy Schneck, Aquatic Associates, Inc., oral commun., 6/10/05, 7/25/05, and updated 9/21/05). With time allowed for analysis of field investigations, the tentative target date for completion of this Task was shifted to mid-March 2006. Therefore, a realistic schedule for adding aspects of this Task was early April 2006. This section (provided on 4/26/06) constitutes the third revision to the 9/27/05 version of the UCC Watershed Plan.]

The primary purpose of this Plan component is to provide a baseline characterization of biological conditions in the upper Clear Creek watershed. Based upon available historical data and recent study results, several biological indicators are linked with three trace metals of concern: copper, zinc, and cadmium. Some data results are not yet available or have not been processed; however, these are referenced here for a future enhancement of the ambient biological characterization completed for this Plan.

Estimated brown-trout populations have been made by the CDOW since 1988 (Woodling and Ketterlin, 2002, Table 8; Shannon Albeke, CDOW, written commun., 3/1/06). A useful depiction of these data for eight sites along the mainstem Clear Creek sites is given as a time series in Figure 1-3. The sites are numbered by CDOW in an upstream-to-downstream order. In addition to these mainstem Clear Creek sites, CDOW has collected fish data for two major tributaries (WFCC and NFCC) as well as at a downstream Clear Creek location (Tunnel #1). In this latter case, the site has been included in only some of the fish surveys, with no data collected since the spring of 2000.

Figure 1-3 indicates the annual variability for these eight sites for the fall-season sampling surveys. The first five sites (#s 1 through 5) are located along stream segment 2; whereas, the remaining three sites (#s 6 through 7.5) are along stream segment 11. Several observations are as follows:

- 1. Sites 1 and 2 in the upper part of the watershed exhibit consistently the highest average numbers of brown trout per acre.
- 2. Most sites exhibited increasing brown-trout numbers during the period from 1998 through 2002; then numbers decreased to levels still above values prior to 1998.
- 3. For recent years, site 3 numbers tend to be lower than site 4 values.
- 4. For sites 5 through 7.5, the annual brown-trout average numbers exhibit similar time-series patterns, with maximum numbers occurring during 2002 (an extremely below-normal flow year).

These fish-data results should be kept in mind when later assessing the corresponding trace-metals conditions along these same reaches of the mainstem Clear Creek (see below).

Figure 1-4 exhibits the numbers of brown trout per acre without the young-of-the-year fish (that is, including only fish with lengths greater than 115 mm). These data, currently available only for the 2001-2004 period, indicate similar patterns with those given in Figure 1-3. However, the 2002 numbers are distinctly different, with the adult fish numbers being considerably lower when compared with the other three years.

Nonetheless, the general patterns of reduced numbers in an upstream-to-downstream direction along the mainstem Clear Creek is indicated, at least for the upper three or four sites.

It is generally known that trace-metals concentrations tend to increase from upsteam to downstream along the mainstem Clear Creek, at least to the Kermitts site CC-40 (TDS Consulting Inc., 2002a, Figures 38 and 47). Trace-metals upstream-to-downstream profiles (Figure 1-5, copper; Figure 1-6 for zinc; and Figure 1-7 for cadmium) along the mainstem Clear Creek clearly indicate the inverse relationship between brown-trout numbers (2001-2004 averages) and dissolved TMs concentrations. However, some anomalous conditions occur:

- 1. CDOW site 3 (0949) exhibits a pronounced reduction in brown-trout numbers relative to only slight increases in TMs concentrations.
- 2. There is some recovery in average fish numbers at CDOW site 4 (0943), despite the increased TMs concentrations compared to the upstream site 3.
- 3. Beginning at CDOW site 5 and downstream, the fish numbers remain low (compared with upstream numbers) and associated TMs concentrations are relatively high (Figures 1-5 through 1-7).

In late September 2005, Aquatics Associates, Inc. (2006) conducted a macroinvertebrate survey at five sites involving West Fork Clear Creek (3 sites) and the mainstem Clear Creek upstream and downstream of the confluence of WFCC (sites CC-25 and CC-26, respectively). The results of several biological indicators from this study were compared with TMs concentrations for the 10/13/05 sampling survey. TMs data are available only for three of the five biological-sampling sites. However, these reflect the relative impacts of the WFCC on this part of the mainstem Clear Creek.

The comparisons are made using various biological indicators provided by the AAI (2006) study as follows:

- 1. EPT Index (EPT richness), indicating sensitivity to metals pollution (Figure 1-8). Site CC-25, with an EPT Index value below 21, exhibits metals-related impairment. This principally involves the relatively high zinc concentrations in this part of stream segment 5. The EPT Index in Clear Creek below WFCC (site CC-26) is beneficially impacted by the low TMs concentrations from that tributary.
- 2. The Metals Tolerance Index (MTI) indicate the inverse pattern (Figure 1-9), with the MTI values being higher for metals impairment. For all WFCC sites, the MTI values are less than 3.0, indicating non-impairment. In contrast, the MTI values for the mainstem Clear Creek sites (CC-25 upstream of WFCC; CC-26 downstream of WFCC), indicate a greater degree of impairment, with the MTI value at site CC-25 exceeding 5.0.
- 3. The Hilsenhoff Biotic Index (HBI) measures macroinvertebrate community responses to organic pollution. Higher values indicate higher pollution. In the AAI (2006) study, all HBI values were less than 6.0. The highest value (4.99 at site CC-25) may be impacted by the Town of Georgetown's WWTP discharge upstream.

4. Macroinvertebrate species diversity is used to assess overall stream "health" and is used in conjunction with other biological indicators. Higher values of diversity are better. No values were less than 1, indicating stressed communities. Values of 3.3 or better indicate non-impairment due to metals. Only one site (CC-25) exhibited a diversity (2.76) less than this threshold. This may be attributable to the relative high zinc concentrations at this location in the mainstem Clear Creek.

The Plan advocates seasonal hardness-based TVSs for trace metals of concern (that is, those listed on CDPHE's current 303(d) list for Clear Creek segments. This approach is supported by the seasonality exhibited in streamflow and hardness data (TDS Consulting Inc., 2004, Figures A-1 for UCCWA data and Figure A-2 for CDOW data).

As future considerations to the Plan's biological assessment, the following recommendations are provided:

- 1. Refinement of the CDOW fish data (specifically, historical and recent data for brown-trout populations without young-of-the-year numbers, Figure 1-4) would be useful to compare with the total numbers.
- 2. It is understood that the historical CDOW macroinvertebrate data (Woodling and Ketterlin, 2002, Table 4) and more recent data through 2003 collected by CDOW used a sampling technique that has been replaced by an improved method (since 2004). Hence, pre-2004 data have not been incorporated into this biological assessment.
- 3. The 2005 macroinvertebrate data are not yet available (Shannon Albeke, CDOW, written commun., 3/1/06) and the 2004 and 2005 macroinvertebrate data metrics need to be calculated. Once these are available, it is recommended that site-by-site links of the resultant metric be made with available TMs data.
- 4. The quarterly CDOW TMs data for 2005 are not yet available (Shannon Albeke, CDOW, written commun., 3/1/06); these data should be added to the CDOW data set and then used for expanding the biological assessment/TMs linkages.

With these near-term biological-assessment enhancements, this section should be revised and expanded to incorporate these missing data.

Source Identification (Watershed-Plan Component 1)

For this component, causes and sources of TMs contamination in streams of the upper Clear Creek watershed are inventoried, using available information from the literature and associated data. Focus of this component (comprised of Tasks 3 and 4 of the 319 Grant for development of a Watershed Plan) is made on those TMs' sources/causes that can be controlled and remediated to achieve existing water-quality standards (WQSs). Some narrative descriptions are provided below; related source listings and water-quality characterization summaries are provided in attached Excel-file worksheets.

Numerous source areas already remediated in the upper Clear Creek watershed have been included in this compilation, based upon the available technical literature and associated notes/observations from CDPHE, DMG, and CSM representatives interviewed for the two tasks in this watershed-plan component. This aspect will be useful in evaluating anticipated load-reductions estimated in subsequent 319-Grant tasks for this phase, as well as judging the performance effectiveness of various treatment technologies.

CERCLA Control Actions (Task 3)

The various identified CERCLA-related control actions tabulated; the mine-related sources are summarized in Table 2-2; whereas, a few WWTP-related discharges sampled during various RI/FS investigations are given in Table 2-3. Some supplemental data and information are provided in the following paragraphs.

Severson (1991, p. 29) reported on pre-treatment (October 1985) concentrations for pretreatment conditions at the Argo Tunnel adit for selected water-quality variables of interest to this assessment (no results for cadmium; assumed to be less than detectible analytical concentrations):

Constituent (units)	Argo Tunnel	CC Upstream	CC Downstream
Copper (lg/L)	5,400	18	14
Zinc (lg/L)	9,600	190	430

[Notes: Add effective TMs loadings removal since 4/98 for Argo WWTP; cite references. Ron Abel, CDPHE-HMWMD is to send TDS a data file with post-treatment Argo discharges (hopefully with flows) and perhaps an update of upstream vs. downstream WQ conditions in the mainstem Clear Creek. These data will be useful for subsequently planned 319-Grant tasks.]

Lewis (1995) documented data results for 3 sampling surveys (July 1994. March 1995, and June 1995) in the North Fork Clear Creek drainage. The data are included in Table 2-2, along with earlier and subsequent sampling-survey results included in various reports.

Medine (1996) followed up the previous investigation with a fall (late-October) 1995 sampling survey, which included point sources of contamination for both the mainstem Clear Creek and NFCC. Again, these results are included in the summary Table 2-2.

UCC-WAG (2001, Table 4, p. 25) reported zinc loadings provided by Medine (1995) for a number of point sources along the NFCC (sequenced below in an upstream-todownstream order) and included a relative ranking (by Holly Flineau, formerly with USEPA) for the following sites:

Location (Code)	Diss-Zn Load (lbs/d)	Rank (1=worst; 8 best)
Chase Gulch	0.76	6
Gregory Incline	6.6	3
Gregory Gulch *	0.63	7
NPS between Gregory	n/a	8
Incline/National Tunn	nel	
National Tunnel	2.2	5
Unknown sources, Black Hay	wk 3.0	4
NPS between BHCCSD	n/a	8
WWTP and Russell C	Gulch	
Russell Gulch	dry	
NPS below Russell Gulch	n/a	8
NFCC at CC confluence	8.0	2
NFCC alluvium	42	1
Total	63	

*Footnotes: n/a, negligible; * partly/totally remediated since 1994 sampling.*

Wildeman and others (2003b) characterized a total of 29 mine-waste piles and sediments in Gilpin County, principally in Russell Gulch and its tributaries (in the NFCC subwatershed). Then, a priority-ranking system was used for determining relative importance of remediation of the various sites included in this investigation. This CSM study was patterned after that completed earlier for Virginia Canyon (Herron and others, 2001). In this earlier assessment, Wildeman and others (2003a) developed a decision tree for assessing aquatic toxicity of mine wastes. Selected assessment results for the Russell Gulch study are summarized for the seven identified "high-priority" sites as follows:

Location	Size, yd ³	Cd, ug/L	Cu, ug/L	Zn, ug/L	Score
Niagra	11,000	<2	7,926	1,798	4.08/5
Baltimore	n/a	9	3,095	950	4.04/5
Solution Gold	l spread out	77	2,160	15,321	4.00/5
Extenuate	n/a	15	21,688	2,069	4.00/5
Old Jordan	n/a	27	208	5,913	3.92/5
Centennial	small	3	610	546	3.88/5
Mattie May	n/a	5	5,073	2,641	3.83/5

CDPHE (1998, Table 01010-5, p. 01010-8) reported groundwater-quality characterization data for monitoring wells in proximity of the Big Five Mine Waste Reclamation project:

Well	Date	Cd (ug/L)	Cu (ug/L	Zn (ug/L)
BF01	11/25/85	43.0	2,410	10,500
BF01	2/12/86	29.0	1,830	9,380
BF01	6/15/86	31.4	1,640	8,640
BF03A	7/14/87	115	15,000	17,300
BF04	7/10/87	17.0	180	4,610
BF06	7/15/87	105	2,850	11,000

This remediation project is near complete (Jim Lewis, CDPHE-HMWMD, oral commun., 1/19/05); remaining work involves characterization, removal, and disposal of iron-oxide sludges in a pond (western part of Idaho Springs) and construction of a pipe conveyance to the Argo Tunnel through the Town of Idaho Springs (along Colorado Blvd.). CDPHE-HMWMD and USEPA are overseeing the first aspect; whereas, CDOT is completing the second aspect. This remaining work is scheduled for the 2005 construction season.

Lewis (2001, Figure 26; 2002a, Figure 24) documented results of the 5/01 and 10/01 sampling surveys of surface waters and groundwaters of Virginia Canyon and the Clear Creek and alluvium both upgradient/upstream and downgradient/downstream of Virginia Canyon. These field surveys in general concluded that TMs loads from this source (Virginia Canyon) would more effectively be accomplished through a slurry (cutoff) wall reaching bedrock in the Canyon, coupled with piping of intercepted flows for conveyance to the Argo WWTP. Estimated loadings for TMs of interest are summarized as follows:

Location (SW or GW)	Date	Cd (lb/d)	Cu (lb/d)	Zn (lb/d)
VC-SW-1, mouth of Canyon	5/01	0.07	1.40	14.0
	10/01	0.02	0.41	4.21
VC-MW-1A, lower Canyon	5.01	0.02	0.23	3.26
	10/01	0.03	4.49	4.90

However, reducing this water flux from Virginia Canyon into the Clear Creek alluvium might have an additional benefit of decreasing D-Zn loadings to Clear Creek in this area by 50 lb/d, assuming a 50-percent reduction of the 111 lb/d loading differential between upstream (site SW-7A) and downstream (site SW-7B) monitoring results for 5/01 (Lewis, 2001, p. 46). The comparable 10/01 loading differential in Clear Creek was less (23.4 lb/d), due to the lower flows at this time of year (Lewis, 2002, p. 32).

An investigation of soil and sediment samples from abandoned mine areas of the NFCC sub-watershed was conducted by the USACOE (2003), in accordance with two Site Work Plans (USACOE, 2002a; 2002b). Results of water-leachate analyses are given for a number of source areas (USACOE, 2003, Table 2), which are incorporated herein by reference.

Point sources (mine-tunnel discharges; tailings/waste-rock piles) were identified and characterized in previous Superfund investigations and associated RODs (Table 2-1) (USEPA, 1987; USEPA & CDPHE, 1991; 2004). RMC (2002, Table 2.3-1) summarized the various CERCLA-related monitoring surveys conducted during the 1985-through-2001 period. Selected TMs data for characterization of various point sources have been

included in this review (Table 2-2). Finally, some additional monitoring was conducted during May 2002 as part of the OU4 investigations to characterize selected point sources (Tt-RMC, 2004a, Appendix A)

Other Nonpoint Sources & Causes of Contamination (Task 4)

The USEPA (1994) reported on a sampling survey completed during April 4, 1994, of the McClelland (previously covered under the OU3 ROD) and Aorta Tunnels:

Location	Diss-Cd	Diss-Cu	Diss-Zn	Flow (cfs)
CC above McClelland	<0.5 ug/L	<5 ug/L	131 ug/L	27.2
	0.000 lb/d	n/a	192.1 lb/d	
McClelland Tunnel outfall	14.3 ug/L	46 ug/L	3013 ug/L	0.060
(see Table 2-2)	0.046 lb/d	n/a	9.7 lb/d	
McClelland below wetland	12.9 ug/L	<5 ug/L	2243 ug/L	0.032
	0.022 lb/d	n/a	3.9 lb/d	
CC below McClelland	<0.5 ug/L	<5 ug/L	112 ug/L	31.9
	0.000 lb/d	n/a	192.6 lb/d	
Location	Diss-Cd	Diss-Cu	Diss-Zn	Flow (cfs)
North Empire Ck ab Aorta	1 ug/L	239 ug/L	155 ug/L	0.011
	0.001 lb/d	n/a	0.092 lb/d	
Aorta Tunnel discharge	1 ug/L	370 ug/L	756 ug/L	0.017
(see Table 2-2)	0.001 lb/d	n/a	0.69 lb/d	
North Empire Ck bl Aorta	1 ug/L	220 ug/L	533 ug/L	0.082
	0.00(11)/1		0 0 (11 / 1	
	0.006 lb/d	n/a	2.36 lb/d	

Footnote: n/a = not calculated.

A second sampling survey (10 surface-water samples and four mine adits/waste-rock pile) was conducted by the CDPHE's (1995, Figure 2 and Tables 5-1, 5-2, and 5-4) HMWMD for the North Empire and Lion Creeks Project area on May 26, 1994. Concentrations and loadings for Cd and Zn were included in this survey (Cd concentrations were nondetectible at less than 0.0050 ug/L). This indicated the redeposition of the Minnesota mill tailings in Lion Creek, which since have been remediated. Mine adit-discharge characteristics from this survey were reported as follows:

Location	Flow (cfs)	Diss-Cu	Diss-Zn
M-1 Minnesota Mine	0.011	550 ug/L	900 ug/L
(see Table 2-2)		0.03 lb/d	0.05 lb/d
M-2 Aorta Mine	0.023	470 ug/L	660 ug/L
(see Table 2-2)		0.06 lb/d	0.08 lb/d

Sares (undated, Table 1) reported water-quality data results for two sampling surveys involving the Little Bear Mine. Samples were unfiltered; therefore, TMs concentrations and loadings for the mine-adit portal are for total species:

Date	Flow (gpm)	Tot-Cd	Tot-Cu	Tot-Zn		
11/08/91	n/a	52	540	13,000		
10/26/95	1.1	51	460	n/a		
Note: $n/a = not$ measured or not analyzed.						

A useful site-comparison index was developed by the Orphan Sites Steering Committee (1996, p. 6) for 11 potential orphan-mine sites in the Clear Creek watershed. Several of the indexing criteria used (specifically, size (giving approx. volume of material), proximity to water, and erosion) are relevant to site characterization (comparing with other studies/field investigations) and eventual remediation prioritization. These sites' water-quality characteristics for TMs of interest in this assessment are summarized for these orphan-mine sites as follows:

Mine-Site Area (POR)	Cd, ug/L	Cu, ug/L	Zn, ug/L	HRD, mg/L*				
Boomerang Gulch (1986)	342	5,340	92,350	81				
Buckley (1985-86) #	96	405	4,280	130				
Donna Juanita (1979-88)	3.1	86.2	820	81				
E. Williams Mine Dump @	5.7	147	1,280	130				
Gregory (Gulch) #3 (85-86)	96	405	4,280	130				
Keystone (1985-86)	17.5	65.5	2,515	130				
Nevada Gulch Sites (85-86)	269	1,645	44,300	130				
Pittsburgh (1985-86)	4.1	165	785	130				
Sans Souci (1986) @	5.7	147	1,280	130				
Trail Creek Sites (1979-88)	3.1	86.2	820	81				
Va. Canyon Sites (1985-86)	450	10,500	84,100	81				
Notes: * Assumed (not measured) HPD values # Located in Gragomy Culch @ Both located in Chase Culch								

Notes: * Assumed (not measured) HRD values. # Located in Gregory Gulch. @ Both located in Chase Gulch.

CWT Corporation (2002) inventoried 41 mine-dump sites (source areas) for possible remediation in the Russell Gulch areas; this report also extracted characterization and prioritization of numerous source areas in Virginia Canyon by the CDMG (Herron and others, 2001). Using the CSM decision-matrix (ranking) system for determining priorities for site remediation, five Russell Gulch sites and 16 Virginia Canyon mine-dump sites were selected for priority reclamation (Appendix B, Part II). However, some of the Virginia Canyon sites ranked as "Priority 1" by Herron and others (2001) did not correspond with the CWT Corporation (2002) ranking scheme.

A final non-CERCLA site with minimal characterization is the Alice Glory Hole drainage in the upper part of Fall River. Data collected by the CDMG (Jim Herron, written commun., 1/21/05 and 1/26/05) included characterization of this source area (Table 2-2). In addition, this CDMG data sets for the two surveys (May and October 2001) provided reconnaissance-level characterization for nearby streams: Little Creek and Silver Creek, both upper tributaries of Fall River.

Summary

In this source-area inventory compilation, both mine-related and WWTP discharges to streams of the Clear Creek watershed have been considered. Highlights are as follows:

- Historical and recent sampling-survey results from numerous investigations (see reference lists and Tables 2-2 and 2-3;
- Characterization and priority-ranking of 205 mine-related source areas in Virginia Canyon (Herron and others, 2001), combined with 41 sites in the Russell Gulch area (CWT Corporation, 2002) and a more recent characterization and prioritization of mine-related source areas in Russell Gulch (Wildeman and others, 2003);
- Compilation of TMs characteristics of WWTPs in the upper Clear Creek watershed (limited for all facilities except that monitoring by the BHCCSD);
- Consideration of several mine-site studies characterizing specific source areas in the watershed (examples include Aorta Mine, Alice Glory Hole, Minnesota Mine, and Lion Creek).

These compilations and characterization of TMs and flows (where available and applicable) from source areas and mine discharges will be used in subsequent tasks for evaluation of TMs-related source-load reductions to achieve various water-quality targets.

Estimated TMs Loads Reductions (Watershed-Plan Component 2)

For this component, estimated reductions in TMs loads from various point sources impacting streams of the upper Clear Creek watershed are inventoried and evaluated, using available information from the literature and associated data. Focus of this component (consisting of Task 5 of the current 319 Grant for development of a Watershed Plan) is made on those TMs' sources/causes that can be controlled and remediated to achieve existing water-quality standards (WQSs) for dissolved species of cadmium (Cd), copper (Cu), and zinc (Zn) – the contaminants of concern (CoCs) for this assessment. Some narrative descriptions are provided below; related source listings and water-quality characterization summaries are provided in attached Excel-file worksheets.

Primary information sources for this task were several modeling assessments completed by Medine (1992; 1999; 2001; 2003), the recently completed Superfund OU4 RI/FS (Tt-RMC, 2002; 2004a; 2004b), and the OU4 record-of-decision (ROD) (CDPHE and USEPA, 2004). For this assessment, some source areas already remediated (some only in part) in the upper Clear Creek watershed are considered, based upon the available technical literature and associated notes/observations from CDPHE, DMG, and CSM representatives interviewed for the two tasks (3 and 4) in a previous watershed-plan component. This aspect will be useful in evaluating the estimated load-reductions, as well as judging the performance effectiveness of various treatment technologies.

In this Watershed-Plan component (Task 5), an attempt was made to do the following:

- Tabulate all identified, contributing mine-related TMs sources (both point and nonpoint) from various previous studies/investigations, in order to minimize the possibility of not considering a source of TMs of concern;
- Screen out these numerous sources, relative to past remediation, relative TMs contributions (based upon available information and data), and other factors;
- Identify "higher"-priority sources for detailed TMs loads evaluation or need for further characterization and/or monitoring.

The Task-5 results then provide the basis for further stream-standards assessment to be completed in subsequent tasks under this 319 Grant.

Analysis of TMs Load Contributions

Cuffin and Chafin (2002, Table 13) provided an estimate of TMs loads from the upper part of the Clear Creek watershed above the Town of Georgetown affecting the mainstem Clear Creek. In this USGS investigation, loads were estimated for inflows to Georgetown Lake (based upon data over a 12-month period during 1997-1998). These are as follows (also reported in UCC-WAG, 2001, Table 10):

Inflow Load (lbs/d)*	Notes
0.28	Net load to Georgetown Lake = 21.4 lbs/yr* .
0.43	New loss from Georgetown Lake (outflow>inflow)
90.0	Net load to Georgetown Lake = 3750 lbs/yr*.
	0.28 0.43

* Converted from reported values as kg/yr.

This study concluded that the principal contributing area of TMs (using Zn as an indicator variable) is the upper mainstem of Clear Creek (87 percent of the total load, UCC-WAG, 2001, Table 11); whereas, relatively smaller load contributions were from South Fork Clear Creek (12 percent) and Silver Gulch (1 percent). This conclusion confirms the investigations regarding load contributions from the Burleigh Tunnel and stream alluvium (including the Diamond Mine) in the Silver Plume area.

Tt-RMC (2004b, Section 1.2.4) distinguishes between TMs-load impacts during low flows (LF) and high flows (HF). Specific focus of this RI/FS investigation is on conditions in stream segments 13b and 11; however, some consideration is given regarding conditions upstream (stream segments 5 and 2). A synopsis of source loadings to the NFCC system based upon this primary reference is provided herein:

- During low flows, the Gregory Incline is the largest point-source of TMs (Tt-RMC, 2004b, Figure 1-5); next in decreasing order are Gregory Gulch, the Quartz Hill Tunnel, and the National Tunnel. These combined TMs loads contribute about 2/3rds of the NFCC loads during low-flow, with the remainder being nonpoint-source loads, such as groundwater inflow and TMs released from stream sediments.
- During high flows, the principal TMs loads contributions to the NFCC stream system are from Gregory Gulch and Russell Gulch; combined, these gulches account for up to 2/3rds of the total TMs loading, with Gregory Gulch contributing about twice the load of Russell Gulch (Tt-RMC, 2004b, Figure 1-6).
- During "very high" flows, the estimated TMs loads from Russell Gulch exceeds those from Gregoary Gulch and all other sources (Tt-RMC, 2004b, Figure 1-7).

Ambient TMs loads reported in Tt-RMC (2004b) were updated using results reported by TDS (2004). In addition, the split of months between high-streamflow and low-streamflow seasons was adjusted to be compatible with the hardness-based analysis completed under Task 1 (see Section 2 of this Plan). This indicated that the month of September most frequently was closer to characteristics of high flows (rather than low flows, as assumed by Tt-RMC (2004b). Updated TMs loads were lower than that reported by Tt-RMC (2004b). This was principally due to the fact that updated loads included the two lowest flow years of record (2002 and 2004 water years). The following tabular summary from Tt-RMC's (2004b, p. 1-7) has been updated later in this section.

		Avg Load	(lbs/d)	percent
Trace Metal	Flow Regime	<i>CC-40</i>	СС-50	NFCC Contribution
D-Zn	High	290	126	30
	Low	100	40.3	29
D-Cu	High	14.9	5.2	26
	Low	3.7	0.83	18
<i>D-Cd</i> *	High	1.53	0.43	22
	Low	0.45	0.14	24

* TDS (2004) did not include cadmium; thus, these have been estimated based upon the other TMs ratios.

Using this same sampling-site representation, CC-40 is considered representative of stream segment 11; whereas, CC-50 is considered representative of stream segment 13b. Regarding upstream conditions and the watershed as a whole, the largest TMs contributors to Clear Creek are NFCC, WFCC, and Virginia Canyon. WFCC contributes about four times the flow of NFCC; however, TMs loads of NFCC are larger, as indicated below (adapted from Tt-RMC, 2004b, p. 1-8, using more recent and updated (through the 2004 WY) results from TDS Consulting Inc. (2004)).

Variable (lbs/d) [POR]	<i>WFCC (CC-20)</i>	NFCC (CC-50)
Average HF loads		
D-Cu	2.6 (2.4)	6.9 (5.2)
D-Zn	29.3 (24.4)	157 (126)
Average LF loads		
D-Cu	0.41 (0.46)	0.63 (0.83)
D-Zn	3.7 (4.2)	36.8 (30.0)

Note: Also, see Table 3-4, which includes the values in parentheses.

For another high-priority remediation area (Appendix Table C-2), the groundwater/stormrunoff loads from Virginia Canyon to Clear Creek are relatively less (Tt-RMC, 2004b, p. 1-8).

Date/Event	D-Cu Load (lbs/d)	D-Zn Load (lbs/d)
High-Flow Event Loads		
August 2001	<1	111
Low-Flow Event Loads		
October 1995	3.1	11
May 2001	<1	20

From the above extracted information and data, this information will help screen the numerous identified sources (both point and nonpoint). For identified high-priority sources, an attempt is now made to evaluate the extent of remediation accomplished by previous projects and then the anticipated levels of remediation for future (many planned) projects.

Proposed CERCLA Remediation (Task 5)

Relative rankings of CERCLA investigations, culminating with the recent OU4 RI/FS determinations (Tt-RMC, 2004b), are provided by Table 3-3. This ranking is considered in this analysis as the principal reference source for relative ranks. However, these are to be compared with other non-CERCLA TMs sources from both point sources as well as nonpoint sources in the watershed (see section below on Other Considerations).

Using these previously-determined estimates of load sources, then the "challenge" in this task's component was to develop realistic (technically based, as much as possible, and economically reasonable) TMs load-reduction estimates. The results of this effort then

will be used to determine levels of improvement of stream water quality (in terms of the TMs of concern) and extent to which stream-standard targets can be achieved.

The recently completed CERCLA (OU4) investigation results summarized in Table 3-3 then is combined with other information sources and studies for a comprehensive tabulation of various (past and ongoing) point and nonpoint sources affecting water quality of streams of the upper Clear Creek watershed. This combined-information-source summary is given in Appendix Table C-2. In this summary, the various sources are segregated by watershed subarea and also are prioritized. In several cases (unranked and low-ranked priority subareas), the sources are listed for information only; these involve either stream segments not addressed by this current study or involve source areas (with a few expections) that have already been remediated. The exceptions may well be addressed in this study, because of continuing TMs contributions. However, these will be considered under the prioritized ranks assumed.

A conceptual schematic of TMs' sources and loads-reduction processes considered in this assessment is given in Figure 3-2. Based upon the screening-process results, two high-rank and two moderate-rank priority areas have been delineated (Table 3-5):

- 1. Area 7 (high) -- Virginia Canyon groundwater and storm-event TMs contributions from numerous mines and waste-rock piles in this subwatershed, affecting the lower part of stream segment 2 and downstream into stream segment 11;
- 2. Area 8 (high) The **North Fork Clear Creek** tributary subwatershed, that has been the principal focus of the recent OU4 RI/FS project (Tt-RMC, 2004a; 2004b) as well as other studies;
- 3. Area 2 (moderate) The **Silver Plume area** affecting the upper part of stream segment 2 and including major source contributions of zinc; and
- 4. Area 5 (moderate) The various identified **Georgetown-to-Idaho Springs area**, contributing sources along the mainstem Clear Creek (affecting stream segment 2).

An exception (addition) to the above four "prioritized" areas for primary study focus involves selected sources continuing to contribute TMs to West Fork Clear Creek (stream segment 5; Area 4 (low rank). Some further analysis will be made of ongoing TMs contributions from mine-related sources (some partly or completed remediated) around the Empire area. The Henderson Mine (Phelps Dodge Corporation) has over the years improved TMs concentrations in the West Fork Clear Creek primarily with its upgraded water-treatment facilities. Because this stream segment is listed on the 303(d) list, it is included in this study to assess the extent to which TMs exceedences can be decreased to achieve more stringent WQ targets (even though seasonally-based TMs stream standards are not exceeded for the constituents of concern in this study; see below).

Based upon the proposed seasonal hardness-based standards proposed in this study, priority TMs loads reductions are evaluated for impaired stream segments under this proposed plan (see Section 1, p. 1-3 and Figure 1.2). Other considerations and

3-4

assumptions for this evaluation need to be kept in mind (see next section). Following are the TMs loads and anticipated reductions that are thought to be achievable (Table 3-6):

- Area 6 -- Virginia Canyon (high priority), directly affecting the lower part of 1. stream segment 2.—The reference site for stream TMs loads in the lower part of the mainstem Clear Creek is site CC-40 (Kermitts). In-stream (Clear Creek) TMs loads during the HF season are 3-to-4 times those during the LF season. TMs loads generated within the Canyon are the largest of any priority area for the LF season and are second (to North Fork Clear Creek) for the HF season, for two of the three TMs of concern (Cu and Zn). As indicated in Table 3-6, estimated TMs loads' reductions vary by season and with specific TMs; estimated reductions range between 8 percent (Cd, LF season) up to 56 percent (Cu, LF season). Remediation strategies currently in progress for Virginia Canyon involve capture of groundwater flows from the Canyon for conveyance to the Argo treatment facility for removal of TMs. This work in progress (J.D. Lewis, CDPHE-HMWMD, oral commun., 1/17/05) will have less beneficial impact on TMs contributed to Canyon streams via snowmelt runoff and summer thunderstorms eroding numerous waste-rock piles in this area (Herron and others, 2001; CWT Corporation, 2002). Additional remediation is expected to be achieved through removal on *in-situ* encapsulation/reclamation of these piles.
- Area 7 North Fork Clear Creek (high priority), directly affecting stream 2. segment 13b.—This area was the primary focus of the recently completed OU4 RI/FS investigations (Tt-RMC, 2004a; 2004b). Identification of mining-related sources and associated TMs loadings are derived from this principal reference source, along with other NFCC data and modeling studies. TMs loads generated from several mine-impacted subareas are being proposed for remediation through collection, pumping, and treatment at a new water-treatment facility near Black Hawk (Tt-RMC, 2004b; CDPHE and USEPA, 2004). TMs loads' reductions from these subareas should be relatively high; these are estimated to be comparable with those for the Virginia Canyon area (Table 3-6). For a second categorical area for the North Fork Clear Creek subwatershed, the Russell Gulch area has been delineated for remediation, principally through sediment controls (Medine, 2003; Tt-RMC, 2004b). Therefore, it is estimated that TMs loads' reductions achieved would be substantially lower (Table 3-6) than for the subareas upstream in the NFCC subwatershed.
- 3. <u>Area 2 Silver Plume area (moderate priority)</u>, directly affecting the upper part of stream segment 2.—For this area in the upper part of the Clear Creek watershed, the Burleigh Tunnel is a principal contributor of TMs to the stream (see Appendix Table C-2 and a previous Table 2-2 (from the previous Tasks 3 and 4 deliverable). Loads of Cd and Cu from this area are minimal; a relatively greater contribution of Zn exists (in the range of 21-23 lbs/d; see Table 3-6). The percent Zn removal during the LF season is estimated at 19 percent; this is substantially less (3 percent) during the HF season, when the in-stream flows are

considerably higher (using site CC-25 as a reference site, with an average of 23.1 cfs for LF and 165 cfs for HF, respectively).

- 4. <u>Area 5 Georgetown-to-Idaho Springs area along mainstem Clear Creek</u> (moderate priority), directly affecting much of stream segment 2 (also consideration is given in this area of stream segments 9a (Fall River, HF D-Cu exceedance) and 9b (Trail Creek, HF exceedances for all three TMs of concern)</u>.—Major TMs contributors for this area were judged to be (1) Trail Creek and (2) the Big Five Tunnel. Data were too limited to incorporate the estimated lower TMs loads generated from the McClelland Tunnel and the Rockford Tunnel in this preliminary assessment (Tables 2-2 and 3-5). Partial remediation has already occurred for the Big Five Tunnel. Specific recommended actions for remediation actions for this and for Trail Creek remain to be implemented. Estimated TMs loads' reductions for the two primary sources in this area are estimated to be less than 10 percent.
- 5. <u>Other Source Areas/Stream Segment Addressed lower tributaries of West Fork</u> <u>Clear Creek (Area 4) and cumulative downstream effects on stream segment 11</u>.--These aspects are considered in this analysis, because of the WFCC impacts on downstream stream segments 2 and 11 along the mainstem Clear Creek and of the cumulative impacts of all upstream conditions on stream segment 11. For the proposed seasonally-based stream standards, no exceedances are noted directly for stream segment 5, West Fork Clear Creek (see Table 1-1).

Other Considerations and Assumptions

Expected (realistic) TMs-load reductions that can be achieved for remediated waste-rock piles is in the order of 50 percent (R.L. Jones, oral commun., 2/11/05). This estimate serves as the basis for calculating reductions in TMs loads from this source category (specifically applicable to Virginia Canyon, Russell Gulch, and other tributaries (gulches) in the North Fork Clear Creek subwatershed). This overall load-reduction estimate may well vary with mineralogy, location, trace metal of concern, and pile size, as well as consideration of other factors. However, information for this form of discrimination is not readily available; hence, this provisional estimate of load reduction is used to demonstrate the feasibility of developing load-reduction estimates for subsequent long-term beneficial stream WQ impacts in the upper Clear Creek watershed.

Mine-related adit-water sources subjected to state-of-the-art treatment technologies achieve 99+ percent removal efficiencies for TMs of concern. This has been demonstrated by the Argo treatment facility operations, through post-treatment monitoring (see Table 3-1 and Figure 3-1). Based upon the OU4 ROD (USEPA and CDPHE, 2004) and its preferred alternative, a level of treatment of 90 percent TMs load removal has been assumed for waste streams anticipated to be treated in this or a similar facility.

For purposes of this assessment, a "margin-of-safety" (MOS) has been factored in for the net estimated load reductions through water-treatment facilities (such as Argo) or on-site remediation. This factor is imposed, primarily because of a range of processes inherent in the watershed and in the stream-channel system (such as entrained TMs-laden sediments; possibility some variability among the TMs of concern) that offset partly the closer-in load reductions for point sources and NPS areas. For purposes of incorporating this MOS consideration and to lend some conservatism to this provisional loadsreduction assessment given in this study, a MOS factor of 0.8 in all cases has been assumed. Investigations including chemical characterization of stream sediments in the watershed indicate presence and persistence of TMs-laden sediments in stream channels; this process continues to contribute TMs to the streams' water column, even after upstream PS/NPS remediation. Further field investigations may result subsequent changing of this factor, either for the overall watershed (as presently assumed) or varied to account for site-specific conditions for any given stream reach or PS/NPS load reduction through remediation. Hence, it should be kept in mind in reviewing the results of this assessment that these considerations have been incorporated in the TMs load reductions estimated for high- and moderate-priority areas discussed above.

In reviewing the preliminary TMs loads' estimates (Table 3-6), it is very apparent that loads generated from primary sources identified in this assessment are greater than calculated TMs loads at selected key streamflow locations. Thus, another process that needs to be considered is the interaction between the stream's water column and stream-channel sediments. This process is considered under the heading of "TMs sediments" in Table 3-6; the values indicated are estimated TMs loads contributed to the stream (at a given reference monitoring site) that thereby tends to offset remedial actions for TMs removal upstream. These as well as other factors (% removal; MOS adjustment) need to be reviewed and evaluated in more detail.

Reviews of previous modeling work by Medine (1997a; 1997b; 1998; 1999a; 1999b) are provided by UCC-WAG (2001, Appendix D) and Tt-RMC (2004a, Section 5.3.2). Review of an earlier modeling application (Medine, 1992) is pending. More recent model applications to TMs conditions and potential remediation in the NFCC have been completed (Medine, 2001; 2003). Some evaluation of these reviews as well as an assessment of relevance to current remediation recommendations (including those in CDPHE and USEPA, 2004) has been made, and this critical review/analysis effort will be completed in subsequent 319-Grant tasks (specifically, ongoing Tasks 6 and 7).

Finally, this assessment maintains the parallel for analysis in distinguishing between a 7month low-flow (LF) season and a 5-month high-flow (HF) season. This is done to provide for a more direct comparison with ambient water-quality conditions and associated seasonal hardness-based standards (see Section 1). This seasonal delineation is critical in subsequent work anticipated for this study's Tasks 6, 7, and 8.

Summary and Recommendations

In this assessment of anticipated levels of TMs load reduction, highlights are as follows:

- High-priority areas for consideration of remediation for achieving WQ stream standard targets consist of the North Fork Clear Creek subwatershed and Virginia Canyon. These areas impact the lower part of stream segment 2 (mainstem Clear Creek) and stream segment 13b (North Fork Clear Creek), as well as the downstream stream segment 11 along the mainstem Clear Creek (Argo to Golden).
- Moderate-priority areas for consideration of remediation consist of the Georgetown-to-Idaho Springs area and the Silver Plume area, both along the mainstem Clear Creek and directly impacting WQ conditions in stream segment 2 and then also the downstream Clear Creek stream segment 11.
- Overall, in the mainstem Clear Creek in downstream stream segment 11, estimated effective TMs loads' removal is estimated to be above 80 percent for Cu and in the range of 30-50 percent for Zn. Estimated removal rates for Cd are suspect, due to small source-generated loads and inability to depict relative mobility of this TM relative to Cu and Zn, that are more affected by channel sediments.
- For these areas, and with consideration of selected possible projects in upstream areas (specifically, Empire area and upper Fall River), remediation actions and associated TMs load reductions are estimated in a preliminary manner. In many cases, data and information are limited. More detailed characterization and monitoring data are recommended (see below).
- With these Task-5 results, subsequent work tasks for this study will evaluate expected probability of achieving WQ targets, and preliminary cost estimates will be evaluated from available sources and/or estimated.

Based upon the work completed to date as a result of this study, recommendations include the following:

- Further WQ characterization of Trail Creek is warranted. The existing available data are limited (CDPHE, 1 year at site 5673; other intermittent samples), and it appears this tributary is a significant TMs contributor to the mainsteam Clear Creek (stream segment 2).
- Further characterization of TMs loads contributed from a set of waste-rock piles representing a range of mineralogy, areal location, age, and other conditions. This would improve or provide a technically-sound basis for estimating TMs load reductions (and hence, remediation benefits to compare to costs). Priority should be given to waste-rock pile characterization in high-ranked areas of Virginia Canyon and the North Fork Clear Creek (to enhance on previous work in the former area by CDMG (Herron and others, 2001) and CCWF (CWT Corporation, 2002) and in this latter area by CSM (Wildeman and others, 2003b) and by Medine (2001; 2003).
- Re-evaluation of the assumed TMs-loads reductions for PSs (treatment facilities) and waste-rock piles, as well as NPS areas.
- Re-evaluation of the MOS and sediment-contributing factors, to account to stream-sediment chemistry and other natural processes inherent in the watershed.

• Completion of review/evaluation work and comparison of the preliminary TMs loads-reduction results reported herein with relevant profiles developed by various Medine modeling studies (as referenced above and citations below).

Nonpoint-Source Management Measures (Watershed-Plan Component 3)

For this study component, further evaluation was made of NPS-management measures, with the goal of meeting existing (ambient/temporary-mod standards) or ultimate (TVS) WQSs (Task 6) and CERCLA-related NPS control measures (Task 7b). An evaluation of non-CERCLA-related NPS controls (Task 7a; Appendix D) remains to be completed. These parts of the assessment are built upon and enhance the work completed as a part of the previous watershed-plan component 2 (Task 5), that primarily addressed CERCLA and other PS-based loadings reductions. Finally, a comparison is made between instream concentrations anticipated from projected TMs-load reductions and underlying WQSs (Task 8), and a conceptual plan for future nonpoint-source controls (analogous to a "skeleton" TMDL) is developed (Task 9 and Appendix E, respectively).

Planned NPS Load Reductions to Meet Existing Water-Quality Standards (Task 6)

For this project-study task, an assessment is made (in a preliminary manner) regarding the extent to which estimated TMs load reductions (see Task 7a/7b below) will either fulfill or at least lower the exceedance probability of applicable water-quality stream standards. This assessment is limited to the several TMs of concern in this study (D-Cd, D-Cu, and D-Zn) and also the stream segments of the upper Clear Creek watershed identified as still impaired (that is, not meeting applicable WQSs), based upon the proposed seasonal HF/LF delineation of streamflow conditions. These entail stream segments 2, 9a, 9b, 13b, and 11. Segments 2 and 11 involve the upper and lower mainstem Clear Creek segment 2, and segment 13b is tributary to downstream segment 11 (Tt-RMC, 2004b, Figure 2-1).

The approach to this assessment is to "build" on the compilation and evaluation of TMs sources (both PS and NPS) that have been identified in the watershed (see previous Chapter 3 and section on Task-7 analysis below). Then, in this section (Task 6), the ability to meet applicable WQSs considering ongoing/planned remediation is evaluated.

Segment/Season/Rank ¹	D-Cadmium	D-Copper	D-Zinc	Notes/description:
SS 2, Low Q HR	n/a	56%	16%	Virginia Canyon
SS 2, Low Q MR	n/a	0%	19%	Silver Plume
SS-9a, High Q	n/a	??	n/a	Fall River (no project) ²
SS-9b, High Q	0%	0%	0%	Trail Creek $(SS 2)^3$
SS 13b, Low Q HR	29%	51%	19%	OU4, Water Treatment
SS 13b, Low Q HR	2%	2%	2%	OU4, NPSs/Sediments
SS 11, Low Q	n/a	n/a	33%	See all other items

 Table 4-1 – Estimated Loadings Reductions (Percent), Applicable Stream

 Segments with Exceedances and for Specific Season of Year

Notes: 1 – Only impaired stream segments and seasons are considered (see Tables 1-3 and 3-6).

Low Q = low-flow season; high Q = high-flow season. HR=high rank; MR=moderate rank.

2 - Only Alice Glory Hole is identified; some CDMG-supervised remediation has occurred (Herron, 2001); however, no more remediation in this subwatershed is currently planned. <math>3 - No remediation is planned.

The applicable stream standards for these sets of conditions, compared to ambient TMs concentrations, are given in Table 4-2.

Based upon previous loadings-reductions estimates (see Section 3 and associated Table 3-6), the following reductions for the TMs of interest in this study and for delineated season/stream-segment impaired conditions are estimated in a preliminary manner:

Table 4-2 – Comparison of Ambient Water Quality vs. Currently Applicable Temporary Mods (in ug/L) with Exceedances and for Specific Season of Year

Trace-Metal (TM)	Ambient	TempMod	Ambient	TempMod	Ambient	TempMod
Concentrations:	(85 th %)	Std	(85 th %)	Std	(85 th %)	Std
Segment/Season ¹	D-Cd	D-Cd	D-Cu	D-Cu	D-Zn	D-Zn
SS 2, Low Q			9.6	8.1	363	257
SS-9a, High Q^2			15.8	11.0		
SS-9b, High Q^2	5.1	4.6	167	148	1082	1068
SS 13b, Low Q	6.1	6.0	67.8	64.0	1905	1864
SS 11, Low Q					479	339

Notes: 1 - Unshaded (--) cells indicate that ambient TMs concentrations are less than the applicable stream standard. 2 - No project work is envisioned at this time; further investigation is warranted.

This tabular summary indicates that the greatest discrepancies involve D-Zn for stream segments (SSs) 2 and 11 (41 percent exceedance of ambient concentration over the applicable standard) and D-Cu (nearly 44 percent exceedance) for stream segment 9a. In all other cases, the differences are less than 15 percent.

For discussion purposes, the same form of comparison also can be made for ambient TMs concentrations (85th percentiles) versus the more-stringent hardness-based table value standards (TVSs), as given as follows (Table 4-3):

Table 4-3 – Comparison of Ambient Water Quality vs. Table Value Standards (in ug/L) with Temporary-Mod Exceedances and for Specific Season of Year

Trace-Metal (TM)	Ambient	TVS	Ambient	TVS	Ambient	TVS
Concentrations:	$(85^{th}\%)$		(85 th %)		$(85^{th}\%)$	
Segment/Season ¹	D-Cd	D-Cd	D-Cu	D-Cu	D-Zn	D-Zn
SS 2, Low Q			9.6	7.9	363	103
SS-9a, High Q^2			15.8	2.3		
SS-9b, High Q^2	5.1	2.2	167	8.6	1082	113
SS 13b, Low Q	6.1	3.9	67.8	16.9	1905	221
SS 11, Low Q					479	124

Notes: 1 - Unshaded (--) cells indicate that ambient TMs concentrations are less than the applicable stream standard. 2 - No project work is envisioned at this time; further investigation is warranted.

This delineation of conditions (by stream segment and season) has been based upon the updated analysis of TMs of concern to this study (Cd, Cu, and Zn), using a more

extensive data set (in terms of data sources, periods of record, and sampling-site locations) than was used in the OU4 RI/FS (Tt-RMC, 2004b). Nonetheless, for comparison purposes, the results of the analysis of preliminary remediation goals (PRGs) identified in this latter project and ability to meet these for TMs of concern in this study for stream segments 13b (NFCC) and 11 (lower mainstem Clear Creek) are summarized in the following Table 4-4 (*Note: Compare this summary with Tables 3-1 and 4-5*):

Trace-Metal Conc. (ug/L)	Flow Regime	NFCC SS 13b	PRG met w/ OU4 action?	Mainstem CC SS 11	PRG met w/ OU4 action?
D-Cadmium	HF	1.9	Yes	1.4	Yes
	LF	3.5	Yes	2.3 (2.9)	Yes
D-Copper	HF	7.4	No	5.2	No
	LF	15.1 (64)	Yes	9.2 (17)	Yes
D-Zinc	HF	381	Yes	200	Yes/ <mark>No</mark> *
	LF	675 (740)	Yes	300	Yes/ <mark>No</mark> *

Table 4-4 –ARARs and PRGs (in ug/L) for Stream Segments 13b and 11

Source: Extracted from Tt-RMC (2004b, pp. 5-9 and 5-68); only TMs of concern to this study are included. Notes: * = Met at lower part of stream segment (near Golden) but not just below the confluence with NFCC.

Shaded cells indicate those conditions (TMs and season) identified as exceeding standards (see Table 4-1) The less stringent ARARs are shown in parentheses, if not identical with the PRG values (Tt-RMC, 2004b, p. 2-7).

It should be kept in mind that the OU4-RI/FS investigation defined the HF and LF seasons slightly different from those used in this study. The month of September was included by Tt-RMC in the low-flow season. However, it was concluded in the current study that the TM-characteristics (and flows) were more comparable to high flows than to low flows. Hence, this study uses a 7-month/5-month (LF/HF) seasonal-flow delineation as opposed to Tt-RMC's 8-month/4-month LF/HF delineation. This should not make much difference, in that the Tt-RMC's data sets (TDS Consulting Inc., 2000) included no sampling results for the month of September. It should be noted that this data set and associated assessment has been updated (TDS Consulting Inc., 2004), including correction of the factor for computation of TM loads.

Now a segment-by-segment analysis is made of the results of planned remedial actions and associated reductions of TMs loads. Table 4-5 gives the "bottom-line" regarding attainment of applicable stream standards for the appropriate flow-season of concern. In general, stream segments (SSs) 2, 13b, and 11 have non-attainment conditions only for the LF season; whereas, tributary stream segments 9a and 9b have non-attainment conditions for the HF season.

<u>SS 2, upper mainstem Clear Creek</u>.—The analysis focused on low-flow (LF) seasonal conditions; for the HF season, all currently applicable WQSs are attained. Primarily with the anticipated TMs-loads reductions due to collection, conveyance, and treatment of Virginia Canyon flows, D-Cu concentrations in the lower part of this stream segment should be reduced from an 85th-percentile value of 9.6 ug/L down to 4.2 ug/L (LF season). For this CoC, a 56-percent reduction is estimated, with the removal of 2.1 lbs/d

of D-Cu from the Virginia Canyon flows. However, despite a 16.1-lbs/d D-Zn load removal by the Virginia Canyon water treatment in the Argo facility, this removal is insufficient to attain the desired level of D-Zn concentration to the existing Temp Mod level of 257 ug/L.

<u>SS 9a, Fall River</u>.—D-Cu is the CoC during the HF season. Herron (2001) describes the conditions focusing on the so-called St. Marys Project for TMs remediation of adverse impacts of a glory hole and mill tailings. Specifically, a Cu source was identified by sampling during the spring-runoff period (associated with the HF season delineated for this study). No further remediation currently is planned, and the non-attainment of the HF D-Cu Temp Mod value of 11 ug/L still needs to be addressed.

<u>SS 9b, Trail Creek</u>.—The situation for this tributary drainage is similar to that described previously for the Fall River. However, less is known concerning PSs and NPS areas within this subwatershed. Stream-characterization data for Trail Creek are quite limited. The TMs Temp Mods designated for this stream were based upon a single-year of data collected by the CDPHE-WQCD during 2002-2003. A few intermittent samples have been collected through other programs (see Table 2-2); however, these were not considered in developing the Temp Mods. Beginning in 2005, samples for TMs analyses are being collected at UCCWA/SLCs' site CC-31 on Trail Creek near its confluence with the mainstem Clear Creek.

<u>SS 13b, North Fork Clear Creek</u>.— With the proposed OU4-related remediation of key drainages in NFCC (specifically, Gregory Incline, Gregory Gulch, and the National Tunnel), currently applicable Temp Mods for D-Cd and D-Zn and an ambient-based standard for D-Cu all are attained for the seasonal LF period.

<u>SS 11, lower mainstem Clear Creek</u>.—The attainment of the D-Zn WQS for this lower Clear Creek stream segment is determined by upstream remediation efforts, that are described previously and elsewhere in this study document. The currently applicable D-Zn standard is attained through implementation of these planned upstream projects, based upon the estimation methods used in this study analysis.

Table 4-6 gives the "bottom-line" regarding attainment of possible ultimate, more strigent TVS-based stream standards for the appropriate flow-season of concern. In general, only the D-Cu WQS target of 7.9 ug/L for SS 2 would be fulfilled. In all other cases, that is, stream segments (SSs) 2, 13b, and 11 LF-season conditions only would not fulfill these more stringent WQS. Moreover, tributary stream segments 9a and 9b, with no current plans for remediation and with non-attainment HF-season conditions for currently applicable WQS, would not fulfill the more stringent TVS target values.

NPS Control Measures – CERCLA-Related (Task 7b)

In this section, anticipated NPS control measures are described, principally on the basis of the various CERCLA (Superfund) records of decision (RODs) and their associated recommended remedial actions. The most recent ROD for OU4 (CDPHE and USEPA,

2004) culminates the overall planned remedial actions and in general complements those actions recommended in previous RODs for the Central City/Black Hawk Superfund site. This section and the next section (for non-CERCLA actions) are critical to try to "fill the gap" for attaining those WQSs not fulfilled by PS flow collection/conveyance to water treatment plants for removal of TMs (see Table 3-6).

Overview of Medine's Various Model Applications

Medine (1997a) pointed out an important distinction between the mainstem Clear Creek and NFCC regarding physical/chemical conditions affecting TMs characterization and associated NPS controls. In the mainstem Clear Creek, stream sediments consist principally of gravels, cobbles, and larger-grained materials in the stream channel and bottom. In contrast, NFCC stream sediments have a substantially larger proportion of sands and finer materials. Hence, TMs attenuation by adsorption is a more significant process in the relatively finer-grained sediments of NFCC compared to the mainstem Clear Creek.

With this critical distinction in mind, Medine has completed several WASP4/META4 model applications for evaluating various remediation alternatives for both streams. These now will be evaluated from the standpoint of NPS-control aspects, along with supplemental information on NPS-control measures obtained from the CDMG.

Some of the earliest of Medine's model simulation results were included in the OU3 ROD (USEPA and CDH, 1991, Appendix A). Model-simulated stream profiles were developed for the no action and several alternatives, including the preferred alternative. For the mainstem Clear Creek stream profiles (SSs 2 and 11), the preferred alternative for TMs remediation were estimated to be substantially less (less than 100 ug/L and between 2-3 ug/L, respectively, for Zn and Cu) than the applicable WQSs for that time (280-300 ug/L for Zn and 10-17 ug/L for Cu). The model-simulated preferred-alternative stream profiles for the North Fork Clear Creek were not so positive: (1) Zn, about 1750 ug/L in the lower reach below Gregory Gulch vs. an applicable standard of 500 ug/L; and (2) Cu, between 80-100 ug/L below Gregory Gulch vs. an applicable standard of 64 ug/L Then some additional model-simulation profiles were provided in Medine (1992) for the Phase-II RI for NFCC and using Zn as an indicator variable for evaluating the potential effectiveness of various remedial alternatives. This model application addressed the concern of water diversions (100 gpm and 750 gpm, respectively) proposed by Central City and Black Hawk in this subwatershed upstream from Black Hawk. These potential diversions would result in TMs increases downstream, because of loss of lowconcentration (dilution) flows. It is noteworthy in these early model applications that low-flow and high-flow scenarios were analyzed separately; this is consistent with the seasonal WQS-development promoted by this current 319-grant study.

Several interim Medine-model analyses were conducted during the 1997-through-2001 period (see reference list for report citations). These model applications in general used data for the 1994-1995 period (Medine, 1995; 1996). These model applications were useful to compare pre-Argo conditions on the mainstem Clear Creek and also to note the benefit of adding benthic (channel-sediment) compartments to the model structure

(Medine, 1997b, Figure 1; Medine, 1997a, Figure 1). Two of the three TMs of concern to this study were provided as stream profiles (D-Zn and Z-Cd) in the 1997 Medine documents..

The WASP4/META4 model application for the mainstem Clear Creek (Medine, 1997b) used October 1995 data to assess changes since the Phase-II RI (approximately in the year 1989). This assessment concluded that the mainstem Clear Creek water quality had not changed; whereas, significantly lower TMs concentrations were noted for WFCC and its tributary, Woods Creek. For D-Zn concentrations in SS 2, the initial contribution of the Burleigh Tunnel was noted (site SW-26, 682 ug/L), with downstream dilution by South Fork Clear Creek, West Fork Clear Creek, and other tributaries. Some D-Zn concentration increase was noted at the lower end of SS2, probably influenced by Trail Creek and the Big 5 waste-rock piles (unreclaimed at that time) (Medine, 1997b, Figure The Argo Tunnel contributed substantial D-Zn loads at this time prior to the 3). construction/operation of the water-treatment facility. For SS 11 during Octrober 1995, D-Zn concentrations were relatively constant through the reach, ranging between 565 and 582 ug/L. The D-Cd profile was similar in relatively pattern for SSs 2 and 11 but with expected lower concentrations (Medine, 1997b, Figure 5). [Note: No stream profile was *completed for D-Cu concentrations.*]

For a similar model-application (WASP4/META4 Version 2) for North Fork Clear Creek, March 1995 data were used (Medine, 1997a). Three remediation scenarios were evaluated, with increasing degree of areal coverage and assuming an active-treatment effectiveness of 95 percent. The remediation impacts then are given in a series of NFCC reach profiles: D-Zn, Medine (1997a, Figure 9); and D-Cd, Medine (1997a, Figure 11). *[Note: No stream profile was completed for D-Cu concentrations, although a pre-remediation profile comparing data with model-simulation results was provided as Figure 6 in the report.]*

Then some model-simulation applications (WASP4/META4 Version 3) were made to assess of effects of sediment and pH controls in the NFCC subwatershed (Medine, 1999a). The March 1995 data again were used, and seven remedial alternatives were evaluated (REM A through REM G). Resultant comparative stream profiles were in terms of T-Zn and T-Cd (rather than dissolved species); thus, they are not directly comparable for this study. Also, in this document, load-reduction efficiencies were assumed as follows:

- Point-source treatment, 95 percent,
- Groundwater capture and treatment, 90 percent, and
- Incapsulation/removal of TMs-laced sediments and tailings, range between 50-75 percent.

For his most stringent remediation alternative analyzed in this investigation (REM G), an overall TMs-removal effectiveness of 80 percent was assumed (Medine, 1999a, p. 4). This study concluded that NFCC TMs-concentrations would be reduced by 80 percent and 75 percent, respectively, for D-Zn and D-Cd (Medine, 1999a, p. 14). In addition, he investigated the benefits of adjusting alkalinity and pH at the Black Hawk WWTP as well as at the Argo water-treatment facility. Then, this model version (3) was further modified

to perform dynamic pH simulations (Medine, 1999c); however, NFCC stream profiles were provided only for total TMs (Zn and Cd) species.

Medine's (2001) study evaluated the significance of contaminated sediments in several tributary drainages of NFCC. In comparisons with applicable WQSs, TMs contributed by various subdrainages were ranked. No model was applied for this assessment.

Overview of OU4 RI/FS Remediation Effectiveness

A recent model-application assessment was completed by Medine (2004) for the NFCC subwatershed, as part of the OU4 RI/FS project (Tt-RMC, 2004b, Appendix E). The OU4 preferred alternative was modeled approximately as "Scenario 4B". This entailed collection and treatment of National Tunnel and Gregory Incline discharges, with discharge of the treated effluent back into NFCC near the downstream limits of Black Hawk, combine with an 80-percent reduction of sediment loads principally contributed by Russell Gulch and Gregory Gulch to the NFCC subwatershed system. In all model runs, the WASP4/META4 Version 4 model was used. NFCC stream profiles for the model calibration are provided (Medine, 2004, Figures 20, 22, and 24) for D-Zn, D-Cu, and D-Cd, respectively, using November 2001 LF and WQ conditions. Verification model runs then were made, using May 2002 (depicting LF despite time of year) sampling-survey results (Medine, 2004, Figures 28 and 30) for D-Zn and D-Cu, respectively. The high-flow model calibration used data from the June 1997 sampling survey (Medine, 2004, Figures 39, 41, and 43) for D-Zn, D-Cu, and D-Cd, respectively. Based upon acceptance of the model "fits" to the NFCC data sets noted previously, the various remedial scenarios then were depicted as reach profiles for LF (Medine, 2004, Figures 54, 56, and 58) and for HF (Medine, 2004, Figures 66, 68, and 70) for D-Zn, D-Cu, and D-Cd, respectively. In these latter model-simulation runs, then, the estimated TMs-concentration reductions in NFCC are depicted. The plots are difficult to discern the absolute levels of concentrations; however, the stream-reach patterns appear reasonable, in conjunction with the remedial alternatives assumed in the set of scenarios.

NPS Control Measures – Non-CERCLA-Related (Task 7a)

[Notes: R.L. Jones' inputs to this subtask are to be provided in Appendix D (it still is presumed that this contribution is in progress; see TDS guidance, with brief meetings with R.L. on 3/3, 25, and 29); scheduled draft-document due date was 3/18/05, but this deadline was not met. Further queries (May-September 2005) have produced no results.]

Other Factors to Consider

Additional NPS controls will be required to address TMs-standards exceedances for Fall River/Trail Creek (HF season) vs. for other SSs (LF season) (Table 4-5). Continued evaluation of feasibility and costs of such controls will be address in subsequent 319-grant tasks.

Summary and Recommendations (Tasks 6 and 7b)

In this watershed-plan assessment component, the numerous TMs-load-reduction measures and controls were reviewed and evaluated, and highlights of findings are as follows:

- For attaining existing applicable stream standards for the designated TMs of concern and using the seasonal (HF/LF) approach, the following conclusions were made (Table 4-5):
 - Stream standards would be attained for the following stream segments and TMs SS 2, Cu; SS 13b, Cd, Cu, and Zn, and SS 11, Zn (all LF season);
 - Stream standards would not be attained for SS 2 (Zn, LF season), SS 9a (Cu, HF season), or SS 9b (Cd, Cu, and Zn, HF season). In this latter case, the limited TMs-characterization data for setting Temp Mods resulted in this non-attainment when splitting one year of monthly data into the two (HF/LF) seasons.
- In order to comply with possible ultimate stream standards (lower, more stringent concentrations, calculated from hardness-based TVSs), the following observations were made (for the same TMs of concern and considering the same seasonal approach) regarding currently proposed remedial actions for reducing TMs loads (Table 4-6):
 - Only the stream standard for Cu in SS 2 would be attained, assuming remediation levels anticipated for water conveyance/treatment of TM-impaired flows principally from the Virginia Canyon area;
 - All other TVS-based ultimate stream standards would not be fulfilled using the currently planned remedial actions for reducing TMs' loads.

Based upon the work completed to date as a result of this study, recommendations include the following:

- Additional monitoring-related work might be considered, comprised of the following aspects:
 - Greater detail on waste-pile characterizations (areal and volumetric dimensions and leachate analyses), with relatively greater priority given to those located in the Virginia Canyon area and along tributaries of North Fork Clear Creek;
 - Continued TMs-related (water-quality and streamflow) systematic monitoring at key designated sites throughout the watershed (Lewis, 2005), with possible modifications in site coverage and frequency; and
 - Site-specific remedial-design and engineering-evaluation/cost analysis (EE/CA) efforts for selected source areas in Virginia Canyon (J.D. Lewis, oral communication, 3/28/05 and following up the OU4 ROD recommendations (R.J. Abel, oral communication, 3/28/05).
- Site-characterization investigations need to be continued for the upper Fall River area (Alice Glory Hole and associated mill tailings; Herron, 2001) to assess the feasibility and reasonableness of bringing Cu concentrations during the HF season to fulfill the applicable WQS for that CoC.

- Site-characterization investigations need to be developed for the Trail Creek tributary area, in order to see what specific TMs sources might be controlled, with consideration of modification of HF seasonal Temp Mods for TMs of concern.
- Further evaluation of review/assessment work and TMs-reduction comparisons reported herein with relevant profiles developed by the various Medine (as referenced above and citations below) modeling studies.

Comparison – Loads Reductions vs. Underlying Water-Quality Standards (Task 8)

Based upon results provided in Tables 4-5 and 4-6; a "streamlined version of estimated fulfillment of stream standards, based upon the loads reductions formulated in this assessment, is provided in Table 4-7 as follows:

Table 4-7 – Summary of Ability of Potential TMs Loads Reductions to Attain Applicable Stream Standards (Temporary Mods) and Ultimate Targets (TVSs or Site-Specific Standards)¹

Stream Segment	Condition (Low Flow/High Flow)	Attainment of D-Cd Standard	Attainment of D-Cu Standard	Attainment of D-Zn Standard
2	LF Temp Mod	2	Yes, 4.2/8.1	No, 305/257
	LF US ³		Yes, 4.2/7.9	No, 305/103
9a	HF Temp Mod		No, 15.8/11.0	
	HF US		No, 15.8/2.3	
9b	HF Temp Mod	No, 5.1/4.6	No, 167/148	No, 1082/1068
	HF US	No, 5.1/2.2	No, 167/8.6	No, 1082/113
13b	LF Temp Mod	Yes, 4.6/6.0	Yes, 33.4/64.0	Yes, 1548/1864
	LF US	No, 4.6/3.9	No, 33.4/16.9	No, 1548/221
11	LF Temp Mod			Yes, 323/339
	LF US			No, 323/124

1 Extracted from previous Tables 4-5 and 4-6.

2 -- = No comparison with stream standard applies (not applicable), because it is judged attainable.

3 US = underlying (former/ultimate, equation-based) standard/target (see Table 1-3). [Note: These often are site-specific.]

Consideration is given to a spreadsheet indicating the linkages among the various listed stream segments (impaired, 303(d)-listed): SSs 2, 9a, 9b, 11 and 13b. In this manner, the interactions with load reductions upstream can be reflected in downstream stream segments in a more explicit manner. The TM variable D-Zn is used as an indicator of this spatial comparison (Table 4-8) relative to various WQ targets. Note the unknown sources of zinc associated with SS 2, in contrast to the losses in SS 11, primarily judged to be due to stream-channel sediment interactions and secondarily the result of stream diversions upstream from monitoring site CC-60 on the mainstem Clear Creek. The stream profiles given in Table 4-8 characterize current conditions; the estimated load reductions would affect the indicated D-Zn loads at many of the calculation points (mainstem Clear Creek, tributaries, or other sources/losses).

A key question in this watershed-planning process is what does it take (in load reductions) in order to meet all targets (underlying/ultimate WQSs, as well as the assumption that the site-specific Zn standard would apply to all stream segments that are being considered in this assessment). *[TDS Note: KF comment during discussions on 6/2/05, AB notes on 7/8/05.]* Throughout this discussion, it will be assumed that the seasonal (LF/HF) hardness-based standards would be the basis for calculation of TVSs for either season, depending upon the trace metal, stream segment of concern, and estimated load reduction. The following "what-if" response to this question is provided with Figures 4-1 and 4-2, Table 4-8, and as follows on a segment-by-segment basis:

<u>SS 2, upper mainstem Clear Creek</u>.—The data assessment concluded that the in-stream D-Cu concentration targets (both applicable and ultimate standards) would be attained for the critical low-flow season. Primarily, with the proposed remediation in Virginia Canyon and, secondarily, proposed elsewhere along this stream segment, the ambient upstream-to-downstream trend of increasing D-Cu would benefit from projected D-Cu load reduction throughout the stream segment, estimated to total nearly 57 percent (Table 4-1). In contrast, the D-Cu load reductions needed to attain targets are less: 17 percent to fulfill the applicable standard and 18 percent to fulfill the ultimate standard (Tables 4-5 and 4-6, respectively).

The more critical issue for this stream segment involves D-Zn concentrations. The 85th percentile value for D-Zn concentration is 364 ug/L, compared with a temp mod of 257 ug/L and a TVS of 103 ug/L. Estimated D-Zn load reductions, based in large part to currently available projects, are estimated to be slightly more than 16 percent (Table 4-1). In comparison, over 29 percent D-Zn load reduction is needed to attain the applicable standard (257 ug/L, Table 4-5) and nearly 72 percent D-Zn load reduction is needed to attain the stream segment, further efforts for seasonal LF load reduction of D-Zn are needed.

<u>SS 9a, Fall River; and SS 9b, Trail Creek</u>.—The situation for these tributary drainages are similar. Both streams would not be in compliance with the high-flow seasonal-based targets – both applicable and ultimate (Tables 4-5 and 4-6, respectively). Some remediation (discussed elsewhere in this document) has been completed in the Alice area of the Fall River. No more remediation is proposed, however, for either the Fall River area or along Trail Creek. In conclusion, further efforts for seasonal HF load reductions of trace metals of concern currently are needed to attain WQSs targets for these stream segments. Also, LF load reductions in these tributaries would tend to benefit the lower part of SS 2 and the entire SS 11 along the mainstem Clear Creek.

SS 13b, North Fork Clear Creek.- As indicated previously, with the proposed OU4related remediation of key drainages in the NFCC, the applicable Temp Mods for D-Cd and D-Zn and an ambient-based standard for D-Cu all are attained for the seasonal LF period. However, the ultimate targets (TVSs) would not be attained during the LF season, with the estimated load reductions from this assessment that are planned to be implemented. Specifically, for the LF period, the following load reductions would be needed for ultimate targets (Table 4-6): D-Cd, 36 percent load reduction; D-Cu, 75 percent load reduction; and D-Zn, 88 percent load reduction. By comparison, estimated (primarily OU4) load reductions for these variables are judged to be 25, 51, and 19 percent, respectively (Table 3-6). It is noteworthy that this assessment is more conservative (less optimistic) than the preliminary remediation goals and judged attainment reported for the OU4 RI/FS (see Table 4-4). Part of the reason for this underattainment of PRGs may be not considering some remedial measures proposed in the OU4 study, especially for the Russell Gulch area and other NPS controls (Table 3-6). Thus, some uncertainty in the conclusions made herein may be revised and updated, based upon the ultimate detailed design and implementation of remedial measures in the NFCC subwatershed. The result might be achieving more effective load reductions than estimated herein. For D-Zn, an additional 0.8 lbs/d may be needed to achieve the LF applicable standard, and about 32 lbs/d load removal would be needed to achieve the underlying standard (ultimate target, TVS). In the latter case, such a level of removal would have significant benefits in attained the underlying D-Zn standard in SS 11 on the mainstem Clear Creek (see below and Table 4-8).

<u>SS 11, lower mainstem Clear Creek</u>.—The attainment of the D-Zn stream standard is made for the applicable standard (339 ug/L) but not for the underlying standard (ultimate target, 124 ug/L. In order to achieve the latter target, the load reduction would have to be increased from nearly 33 percent to over 74 percent. Note, however, the interaction with upstream stream segments. Specifically, as noted previously, implementing the NFCC load reductions, principally due to the OU4 remedial projects, would achieve a substantial part of the estimated D-Zn load reduction for this stream segment (an estimated 32.5 lb/d of the 38.5 lbs/d needed; see Table 4-8). Further remedial measures upstream (SS 2) in combination that those proposed for SS 13b would probably result in attainment of the underlying standard (ultimate target) of 124 ug/L for this lower stream segment.

For these last two stream segments (SSs 13b and 11), it is perhaps noteworthy why WQSs targets and loads reductions developed herein differ in some cases from the PRGs reported by the OU4 RI/FS (Tt-RMC, 2004b, Chapter 5). Two contributing factors consist of the following (see, in particular, OU4-FS subsections 5.2.1.2 and 5.2.2.2 in Tt-RMC, 2004b):

- This WQ data assessment for this study incorporated more of the UCCWA-SLCs data as well as data from other sources for these stream segments (namely, BHCCSD and CDOW data) for the period of record through 2004.
- The WQ data assessment for this study assumed a slightly different split in HF and LF seasons, based upon characteristics of water-quality data sources, some of which were not considered in the OU4 analysis, which determined a seasonal split more on flow conditions. Specifically, WQ data for the month of September (provided by BHCCSD for SS 13b and by CDOW for SSs 13b and 11, as well as for other SSs), more aptly fit into a HF period rather than LF.
- As a result of the above aspects, TMs statistics and average hardness concentrations differ between the two investigations.

Thus, it should be recognized that any comparative analysis for attainment of WQSs in the upper Clear Creek watershed (or any watershed, for that matter) is dataset-dependent and that further evaluation of seasonal periods and of relevant associated data may be warranted.

In summary, attainment of WQSs for individual stream segments should take into account the interactive nature of the segments; that is, the extent to which load reductions achieved for upstream/tributary stream segments will benefit the lower stream segment of the mainstem Clear Creek. As a consequence, this watershed's pending TMDLs need to be evaluated holistically within the framework of the entire watershed's stream system.

Conceptual Plan for Future NPS Controls (Task 9)

Outline this plan in this section; a skeleton TMDL has been developed for stream segments of interest in this study (see Appendix E). A key issue is how to consider the one draft TMDL in process (CDPHE, 2002a), with accompanying review comments (UCCWA, 2002), along with the other pending stream segments currently without any formulated TMDLs.

It is anticipated that the skeleton TMDL (Appendix E) for the upper Clear Creek watershed in fact is a series of TMDLs for each of the impaired (303(d)-listed) stream segments in the watershed. The content of Appendix E was discussed at a 6/2/05 meeting of the 319-Grant Subcommittee, and the preparation of this, based upon discussion results, is pending.

<u>Identification of critical areas (stream reaches and associated trace-metals</u> <u>characteristics</u>).—This aspect has been addressed by the previous section, on a streamsegment by stream-segment basis. As concluded above, remedial measures for upper parts of the watershed will over the long term benefit lower stream segments in the watershed, and this situation needs to be taken into account in a holistic approach to TMDL assessments for identified stream segments judged to be impaired for one or more trace metals.

<u>Watershed NPS protection/control goals</u>.—In general, as pointed out in UCC-WAG (2001, chapters 11, p. 51), point sources are easier to identify and to remediate but require treatment in perpetuity. Hence, O&M costs of waste-stream facilities in the watershed (such as the Argo Tunnel) theoretically are infinite. Consideration of passive-treatment options (Tt-RMC, 2004b, Appendix B) were evaluated for several major acid-rock drainage point sources in the NFCC subwatershed; implementation of one or more of these options or construction of another waste-stream treatment facility in this subwatershed (the OU4 preferred action as provided in the ROD: CDPHE-USEPA, 2004) will all contribute to load reductions for the areas selected for consideration and located within this subwatershed. However, other waste-rock pile and mill-tailings areas within the NFCC subwatershed as well as along the mainstem CC have been identified and need to be considered in the overall load reductions to achieve WQS targets (applicable or ultimate). This latter component comprises nonpoint sources that are the subject of this part of the Plan.

Mining-related nonpoint sources (such as waste rock dumps and piles and mill tailings), although inherently diffuse and frequently more difficult to characterize, generally can benefit by some form of remediation. This may involve *in-situ* encapsulation of wastes, commonly with but sometimes without consolidation of waste material, along with stabilization of the encapsulated wastes in order to reduce (but not eliminate) erosion of these materials over geologic time. Use of best management practices (BMPs, see below) both during construction of wastes to be encapsulated and over a finite post-construction period is technically recommended. However, one alternative, given

unfavorable conditions or small amounts of wastes spread over a relatively large area, may involve moving the waste materials to another location, possibly a waste-disposal site, where conditions are more conducive to minimize erosion of materials or transport of contaminants via surface runoff or subsurface groundwater flows.

The types of mining-related NPS controls incorporated into the OU4-Superfund preferred alternative are indicative of the remedial structural measures that warrant consideration. These have been listed in the ROD (CDPHE and USEPA, 2004, Section 12.2.1) under the category of sediment controls and include the following:

- Removal of selected mine waste piles, with waste materials trucked to an on-site repository for disposal.
- Capping of mine waste piles and adjacent areas.
- Stabilization of stream channels adjacent to capped waste piles.
- Construction of "run-on" ditches (essentially to convey relatively uncontaminated water around and away from contaminant sources, according to R.J.Abel, CDPHE-HMWMD, oral commun., 6/21/05) upgradient from waste piles or mill tailings.
- Construction of sediment dams in selected streams impacted by upgradient waste piles.

The OU4-Superfund selected remedy (Alternative 4B) includes these so-called Tier-2 sediment controls in the proposal remedial actions for its cleanup plan. Details are incorporated herein by reference and are provided in Tt-RMC (2004b).

Non-Superfund characterization and/or remedial measures that might be categorized as mining-related NPS controls have been implemented in the upper Clear Creek watershed. Examples that have been completed or are underway include, but are not limited to, the following (see UCC-WAG, 2001; Herron, 2001; CDPHE, 2003):

- Minnesota Mine tailings remediation (above Empire; completed)
- Big Five tailings remediation (along mainstem Clear Creek, completed); mineadit pond drained and back-filled, near completion)
- Virginia Canyon north of Idaho Springs (characterization completed), remedial work (Superfund-supported) overseen by CDPHE-HMWMD (summer 2005)
- Alice Mine (Glory Hole) (upper Fall River subwatershed, completed by CDMG)
- Gilson Gulch north of Idaho Springs (CCWF Phase-1 characterization ongoing).

An example of a "lesson-learned" remedial investigation involved a constructed wetland for the Burleigh Tunnel (UCC-WAG, 2001, Chapter 4 giving details of the #3 priority for remediation and in Subsection 14.2, pp. 66-67). Examples of innovative remediation approaches are given by the BASX water-treatment system (UCC-WAG, 2001, Section 14.3, pp. 67-68) and discussion of Alternative 4A in Tt-RMC (2004b) promoting tracemetals reduction/removal through precipitation as sulfides in sulfate-reducing bioreactors (SRBRs) by creating reducing conditions created by an orgnic media. With this technology, the media periodically would have to be excavated and disposed of at an onsite mine-waste repository or off-site.

<u>Skeleton TMDL (impaired, listed stream segments</u>.—Guidance details for this aspect is given in Appendix E of this watershed-plan document.

Recommended best management practices (BMPs).—Mine-related structural BMPs in general are designed to control the volume and discharge rate of contaminated runoff as well as reduce the magnitude of pollutants. In addition, structural BMPs can be designed to collect and convey uncontaminated water around waste-rock piles, mill tailings, and other mine-contaminated materials and areas. Examples of structural BMPs include, but are not limited to, sediment detention/retention basins, areas for water infiltration into the subsurface materials, grassed swales for reducing flow velocities and inducing percolation into underlying soils, and constructed wetlands. Mining-related structural BMPs can deal with old mine-adit discharges or other subsurface flows from waste-rock piles and mill tailings. Also, BMPs can collect surface-water runoff from small land areas or can be installed in flowing streams (such as on-channel or off-channel sedimentation basins) to allow suspended sediments laden with contaminants (principally, trace metals are of concern) to settle out and be removed from waters subsequently released from such ponds. For sustainable BMP operations, maintenance of structural facilities, such as detention/retention ponds, is critical, and dredged material has to be disposed of in a manner that it is not re-introduced into the hydrologic environment.

UCC-WAG (2001, Section 3.5, p. 31) discusses the use of sediment "traps" for controlling (trace-metals') contaminated sediments. This formed the basis of selected Medine (1995; 2001) modeling studies in the NFCC subwatershed; the remediation strategy was to collect (primarily with sedimentation basins) metals-rich sediments and to dispose of these sediments at locations removed from stream channels (preferably at a nearby repository). The basic concept entailed construction of relatively low dams across small stream channels, in order to reduce water-flow velocities and to allow suspended sediments to settle behind these dams. Then, materials deposited behind each dam would have to be removed periodically to remove this contaminant source from the hydrologic system. Two variations of this basic concept involved (1) dams across the mainstem NFCC, and (2) dams constructed across smaller tributary streams of the NFCC. The Tier-2 sediment-control aspects of the Preferred Alternative (4B) of the OU4 RI/FS incorporated this concept for the smaller subdrainage tributaries of NFCC. This is preferred to larger and higher dams, because of SEO regulatory restrictions and also associated failure risks of larger structures (UCC-WAG, 2001, p. 31). Easy maintenance of such structures (that is, access by backhoes or front loaders for removal of sediments and road haulage by trucks) is a key factor.

Mining-related nonstructural BMPs are generally operating procedures to improve runoff quality by minimizing the generation and accumulation of pollutants on the land surface at or near their sources. An example would be reduction before transport of contaminants in stormwater runoff. These BMPs are often referred to as "good housekeeping" techniques. Also included in this category are public awareness, regulatory controls, and monitoring programs to assess BMPs' effectiveness.

Conceptual NPS-Control Plan Implementation

Plan implementation includes follow-up practices in addition to the physical constructing of structural BMPs or applying non-structural BMPs. One such component involves design and execution of a hydrologic and water-quality monitoring program. Another component involves recent, ongoing, and near-term efforts by the CDPHE-HMWMD, CDMG, and the CCWF to execute various remediation projects. Examples applicable to the upper Clear Creek watershed include, but are not limited to, the following:

- Virginia Canyon, CDPHE-HMWMD (Jim Lewis), waste-pile remediation (consolidation and capping), summer 2005
- OU4, CDPHE-HMWMD (Ron Abel), preliminary engineering design (funds from USEPA, RFP to be released on/about July 7, 2005, seeking A-E proposals and selection
- Big Five, CDMG (check?) (Jim Herron), draining of pond, diversion/collection of mine-adit flows into Clear Creek (current) and planned for Argo treatment facility
- CCWF (Ed Rapp), provide project information here for 2005 work
- CDMG other (Jim Herron), add as appropriate pending project work for 2005

Funding opportunities.-- This critical aspect (Task 10) is included later in this Watershed Plan (see Section 10). Information will be obtained from, but not limited to, the following sources: UCC-WAG (2001, Chapter 13), CDPHE-HMWMD, USEPA, CDMG, and CCWF.

<u>Public awareness and participation</u>.--This involves pending Task 11, including matching in-kind contributions and final 319-Grant workshop presentation scheduled for a specific workshop session. A joint session of the Clear Creek Watershed Foundation (CCWF, Ed Rapp) and the Clear Creek Watershed Forum (CCWF, Carl Norbeck) tentatively has been scheduled for Tuesday, September 27, 2005. An overview of the components addressed to date in this Watershed Plan is to be included. This will be provided by Dr. T.D. Steele, with assistance and inputs from other 319-Grant Subcommittee members. [Note: Any resultant comments, responses, and action items are to be documented after the Clear Creek Watershed Forum presentation (Section 11 and Appendix F, pending)]

<u>Recommendations for Phase-II work</u>.—[Note: A follow-up 319 Grant proposal, ca. 11/15/05, is possible and may be considered in late 2005.] However, recent discussions focused upon the remaining four watershed-plan components for completion during 2006. Another key aspect of the Watershed Plan to be addressed is the inclusion of other water-quality issues. In particular, nutrients (N- and P-species) emanating from the watershed and affecting beneficial water use, both within the watershed and external to it (that is, Standley Lake as well as downstream uses) (ASI, 1993; Tetra Tech, Inc., 1994). A decision will need to be made regarding what is justifiable regarding applying for a Phase-II 319 grant, what should be funded internally within UCCWA, and what should be proposed for possible other funding sources. Another water-quality issue involves generation and transport of suspended sediments via streams in the watershed.

Information/Education Component (Watershed Plan Component 5)

Task 11 – Summary of Comment Forms, from Clear Creek Watershed Forum held on September 27, 2005. Seven comment forms were received; see items a-g below:

1. Does this Watershed Plan meet your expectations? Please explain your answer.

- a. Needs to include the Gem waste-rock consolidation site and also indicate a high priority for Gilson Gulch. <u>Any</u> improvement to water quality of the watershed's streams requires a place to put the mine-waste materials (that is, a repository).
- b. The **Plan** is good! The **Plan** is great!
- c. Very good.
- d. Too bad Task 2 schedule was delayed for this initial version of the **Plan**.
- *e. Expectations were met for the most part, except items mentioned in Question 2.*
- f. Only with respect to metals loading. A Watershed Plan should include growth issues with regard to water quality, nutrient loading, sediment loading, fisheries, recreation, water-supply development, transmountain diversions, transportation development, etc.
- g. No comment provided.

2. In your opinion, does anything need to be added? For example, should nutrients and/or regionalization of wastewater treatment facilities be addressed?

- a. Add the results from sustainability part of this Forum.
- b. Regionalization should certainly be addressed in the next phase.
- c. Recommend adding WWTP effluent data (nutrients/trace metals).
- *d. Remaining elements of Plan recommended by USEPA. Add nutrient-species characterization—similar to trace metals assessment.*
- e. Nutrients should be added to the **Plan** along with a description of land uses associated with stream loading and treatment plants contributing to Clear Creek watershed streams.
- *f.* No comment provided.
- g. It would help to look at the spatial distribution of loads during each sampling period. Are loads conserved or is some natural attenuation occurring? This question was answered at the end of the presentation, but it is not clear if the information is included in the report.

3. Any other comments, suggestions or recommendations?

- a. The **Plan** needs to discuss an analysis process for local sustainability. Perhaps a "gaming theory" analysis of various scenarios might be useful. Need to put some academic rigor to the problem.
- b. Funding must be forthcoming.
- *c.* Too bad other wastewater management entities did not choose to participate.
- *d.* Continue stakeholder outreach. Develop a series of fact sheets dealing with various aspects of the *Watershed Plan*.
- e. No comment provided.
- f. No comment provided.
- g. No comment provided.

Schedule for Implementation of NPS Management Measures (Phase II)

[Note: This updated section was added as a Phase-II effort for updating Section 6 (Component 7) of the Upper Clear Creek Watershed Plan.]

- 1. See CDPHE-WQCD-NPS, 2005, Sections 7.1 and 7.2
- 2. Worksheet #25 Selecting Possible Implementation Tools
 - a. Water-quality monitoring program (see below, Section 9; component 6)
 - Biological monitoring program to date, CDOW annual fish shocking and biological assessment(s); also see pending Task 2 with link to TMs
 - c. Predictive models
 - d. Inventory list, mapping, and surveys (various)
 - e. Geographic information systems (GIS); Clear Creek County information base
 - f. Risk assessment
 - g. TMDLs (see other parts of Watershed Plan, including Appendix E)
 - h. Wasteload or load allocations
 - i. Best management practices (BMPs)
 - j. Trading program (see CCWF proposals on this critical topic)
 - k. Reservoir management (Standley Lake); needs further evaluation
 - 1. Riparian corridor management
 - m. Site-specific research programs
 - n. Local government regulation and management
 - o. Regional planning (DRCOG; counties' master plans)
 - p. State/watershed-control regulations, stream-standards regulations, and discharge permits
 - q. Federal water-quality regulation (that is, Clean Water Act with amendments)
 - r. Other Federal programs (Superfund/CERCLA)
 - s. Public outreach and education (see Watershed Plan's Task 11 and workshop results)
- 3. Worksheet #26 Draft (TMDL) Implementation Plan Matrix
 - a. Develop a watershed goal statement
 - b. Identify management objective(s) for the watershed
 - c. Identify information and educations activities or a program (see also Task 11)
 - d. Identify the monitoring component and associated activities (see Section 9 below)
 - e. Describe implementation activities
- 4. Assuming availability of \$2M/year for 5 years, the following projects and activities are planned:

2006	2007	2008	2009	2010
Upper Virgin	ia Canyon			
Gilse	on Gulch			
	Russell Gulch			
	Trail Creek-			I
	USF	S and other targets of	of opportunity	

[Note: This 2006 Addendum to the Upper Clear Creek Watershed Plan is to highlight the importance of several near-term, high-priority mining-related remediation projects.]

The implementation of these selected remediation projects, designated herein as "high priority", will help towards achieving the attainment of current as well as ultimate waterquality standards (targets) specified by the CDPHE, the regulatory agency responsible to set these in coordination with the USEPA and the watershed's stakeholder. The Watershed Plan provides a detailed inventory of known nonpoint sources as well as some estimate of associated trace-metals loadings. These aspects, along with comparison with current and ultimate stream standards, serve as the basis for prioritizing remediation projects as well as for estimating anticipated benefits of remediation for achieving loads reductions for those contaminants of concern included on the current 303(d) list of impaired stream segments.

The remedial-action priorities being considered over the near term focus on trace-metals loads reductions that benefit the attainment goals (water-quality stream standards) for stream segments 2 and 11 of the upper Clear Creek watershed. The schedule for attainment of water-quality goals in these segments is by the year 2012. [Notes: Although applicable stream standards are set for year-round conditions, the Plan proposes to modify this aspect to set standards for discrete high-flow and low-flow seasons of the year for streams in this watershed. However, pending approval of this concept does not affect the overall intent of attainment of water-quality targets through remediation as described in the Plan. Finally, the interlinkages between stream segments should be recognized; specifically, load reductions through remedial actions benefiting upstream stream segments also will benefit stream segments that are directly downstream.] Accordingly, five projects are described in some detail in this Addendum that should benefit in part achieving this attainment goal. These have been designated in currently proposed or planned projects and involve the following mines, subwatersheds, or areas:

- Gilson Gulch subwatershed,
- Castleton Mine Dump (upper Virginia Canyon),
- Trail Creek subwatershed,
- The Maude Monroe Mine and Juanita Mine west of Idaho Springs, and
- North Empire Creek subwatershed.

The Watershed Plan's current screening-process results (see Plan's pp. 3-4 through 3-6) delineated and discussed in detail two high-rank and two moderate-rank priority areas recommended for near-term remedial actions. Descriptions of the rationale and other aspects of each of these proposed or planned projects, all but one of which are located within these priority-ranked areas, are given in the following sections. Remediation of the Gilson Gulch subwatershed is now added, for the reasons given above and due to the more recent waste-pile/flow characterization results, as referenced below.

Gilson Gulch Subwatershed

A remediation-related characterization and feasibility study for this subwatershed has been completed (TDS Consulting Inc., 2005). Conditions in this subwatershed adversely

impact water-quality conditions in the upper part of stream segment 11 (mainstem Clear Creek below the Argo discharge). In this investigation, waste-rock piles were characterized geochemically and flowing stream reaches and adits were sampled. A hazard-ranking system used elsewhere for assessing mining impacts led to a prioritization of which piles should be remediated through effective use of BMPs. This study served as the basis for the PIP for this subwatershed (CCWF, 2006) currently awaiting approval by the CDPHE and USEPA. Using zinc as the trace-metal indicator, the Watershed Plan identified stream segment 11 as not achieving ultimate (underlying TVS) standard, even with upstream planned remediation actions (see Plan's Table 4-6). The Plan hadn't identified this area for its initial ranking, primarily because little study had been done in the Gilson Gulch subwatershed until the characterization and feasibility study, completed at about the time of the Plan itself. It now is bettwe known the potential trace-metals loads contributions from this subwatershed, and the proposed Gilson Gulch PIP will result in further TMs loads reductions to increase the incremental load reduction (estimated additional 40-percent reduction needed for zinc) to achieve the water-quality attainment targets.

Castleton Mine Dump

The CDMG has completed a feasibility study of the Virginia Canyon subarea (Herron and others, 2001). This initial study identified the Castleton Mine Dump area as one of the highest priority areas needed for remediation (CDMG, 2006). This comprehensive study then was supplemented by another CCWF study (CWT Corporation, 2002). Virginia Canyon adversely impacts the lower reach of stream segment 2 (mainstem Clear Creek above the Argo discharge). Some remediation work was completed in this subwatershed during 2005. Ambient levels of copper and zinc for this impaired stream segment of the upper Clear Creek watershed currently do not achieve the low-flow TVS standards (see Plan's Table 1-3). As in the previous case, when using zinc as the tracemetals indicator, significant additional TMs reductions are needed in order for this stream segment to overcome its non-attainment of the zinc target (see Plan's Table 4-6). The proposed radiation of the Castleton Mine Dump piles will benefit the overall remedial-action strategy being implemented by the CDMG.

Trail Creek Subwatershed

Impaired water-quality conditions in Trail Creek resulted it to be included as one of two major TMs loads contributors to the lower part of stream segment 2 (mainstem Clear Creek). The other named major contributor, the Big Five Tunnel, already has been remediated through recent (2005) clean-up actions. Tailings in the Trail Creek subwatershed were mentioned in the Superfund ROD but not in the OU (UCC-WAG, 2001, Table 17) as a candidate for CERCLA-supported remediation. The Trail Creek subwatershed has been characterized using more limited data than available for other monitoring sites in the upper Clear Creek watershed. Intermittent historical data for Trail Creek are have been tabulated (see Plan's Table 2-2, 8 samples). An initial year's data collected by the CDPHE provided a seasonal water-quality characterization and resulted in this stream being added to its 303(d) list for several trace metals (Cd, Cu, Pb, Mn, and Zn). Moreover, it has been designated as a separate stream segment (9b) because of its impaired quality. Beginning in 2005, Trail Creek near its confluence with the mainstem

Clear Creek (site CC-31) has been added to the UCCWA-USEPA supported TMs monitoring-program component; these recent data confirm the characterization provided by the earlier CDPHE data. Beginning in 2006, a supplemental TMs-characterization study has been implemented (Crouse, 2006), with support of the CCWF. The focus of this study involves Trail Creek and the lower reach of stream segment 2 and upper segment of stream segment 11 (mainstem Clear Creek segments), and this water-quality/hydrologic data-collection study, supplementing the UCCWA-USEPA program, will provide useful information on streamflows and water-quality conditions for this subwatershed. It is planned (by CCWF) to develop a technical and cost proposal for the Trail Creek subwatershed, using the data and information outlined above, for the next round of the NPS 319-grant process, given the priority and knowledge of the need for remedial action.

Maude Monroe and Donna Juanita Mines

The Donna Juanita Mine tailings were identified in UCC-WAG (2001, Table 17). Unfortunately, any data have not been compiled for the Maude Monroe Mine and are quite limited for the Danna Juanita Mine (see Plan's Section 2, p. 2-5, for TMs/HRD characterization). However, these mines are located within a "moderate-rank" priority area for remediation in the Watershed Plan (see pp. 3-4 and 3-6). Recently implemented remedial action involving principally the Big Five Tunnel and pond, along with Trail Creek remediation, are estimated to result in TMs loads reduction of less than 10 percent. Obviously, additional remediation in the lower reach of stream segment 2 (mainstem Clear Creek) is critical for attainment of overall attainment of water-quality targets for this stream segment as well as stream segment 11 downstream (see Plan's Table 4-6). Accordingly, watershed stakeholders have identified these mines for near-term remedial-action consideration.

North Empire Creek Subwatershed

The Aorta Tunnel discharge and the North Empire Creek subwatershed in general have been characterized by the USEPA (1994) as well as the CDPHE (1995). Highlights of these initial characterization studies have been incorporated into the Watershed Plan (see Plan's Table 2-2 and Section 2, p. 2-4, for TMs/HRD characterization). Some remediation has taken place at the Minnesota Mine site on Lion Creek. Although the North Empire Creek is included in an unlisted stream segment 6 (tributary of West Fork Clear Creek), it impacts the lower reach of West Fork Clear Creek as well as stream segments 2 and 11 downstream in the mainstem Clear Creek. Accordingly, watershed stakeholders have identified this subwatershed for near-term future consideration of remedial actions for reduction of TMs loads.

Interim and Measurable Milestones and Surrogate Measures (Phase II)

[Note: This updated section was added as a Phase-II effort for updating Section 7 (Component 8) of the Upper Clear Creek Watershed Plan.]

- 1. See CDPHE-WQCD-NPS, 2005, Section 7.4
- 2. Worksheet #27 List Possible Measures of Success
 - a. Measures of success categories: chemical, physical, biological, and watershed
 - b. Each success-measure category has specific topics to be considered
 - c. For each measure, describe interim and long-term measures
 - d. Look also for each creative approaches to measure success
- 3. Worksheet #28 Developing Criteria to Measure Process and Success
 - a. From the previous worksheet (#27 above), for each indicator to measure progress, develop either a target value or a goal and interim targets (short-term, medium-term, and long-term)
 - b. Develop a worksheet with this matrix for each management objective identified
- 4. To <u>achieve</u> watershed sustainability improvements, outreach activities of the various watershed stakeholder groups, are being designed to provide jurisdictions, agencies, and developers with the information and templates to make sustainability-informed decisions regarding environmental restoration and protection activities and development practices.

Regarding <u>measurement</u> of watershed sustainability improvements, for decisions to be made in favor of sustainable practices, compelling qualitative and/or quantitative data and information must be provided to decision makers. These metrics can then be applied to the various project activities to document the spatial extent of the improvement practice

Accomplishments will be <u>reported</u> at various stakeholder meetings in a format that will encourage the broader application of specific sustainability practices both in the Upper Clear Creek Watershed. It is a widely recognized principle that once a precedent or model is in place, others will replicate that approach. Near-term and long-term milestones for these aspects are given as follows:

2006-2007	economic/ecologic metrics modeling
-----------	------------------------------------

2007-2010 scenario evaluation based on water-quality measurements and socio-economic impacts

Criteria for Achieving TMs Loads Reductions (Phase II)

[Note: This updated section was added as a Phase-II effort for updating Section 8 (Component 9) of the Upper Clear Creek Watershed Plan.]

- 1. See CDPHE-WQCD-NPS, 2005, Sections 5.5 and 6.2.
- 2. Worksheet #23 Documenting Management Measures and Constraints
 - a. This worksheet includes estimating load reductions from each management measure.
 - b. Load estimates are made by constituent of concern or stressor; this can be a range estimate such as high, medium, or low or in units of per acre per year.
 - c. A description of each management measure should be developed. This describes what it is and what it does or should do.
- 3. Worksheet #24 List Best Management Practices (BMPs) Used In Watershed
 - a. What erosion control measures are used to limit erosion of soil from disturbed areas at a construction site?
 - b. What sediment control measures are used to limit transport of sediment to offsite or into downstream receiving waters?
 - c. What drainageway protection and runoff management measures are used to protect streams and other drainage ways?
 - d. What other management practices are in watershed?
 - e. A check-off list of construction, temporary, or permanent BMPs is provided in this worksheet.
- 4. BMPs applicable to remediation of abandoned mines are described in a report prepared by CDMG (2002).
- 5. The quantification of pollutant loads and load reductions is a key component of the data analyses and characterizations for any watershed plan (Section 5.5). Since 2000, trace-metal-load calculations have been made at key monitoring site locations in the Upper Clear Creek Watershed (TDS Consulting Inc., 2000, 2002 through 2006).
- 6. In other parts of this *Watershed Plan*, water-quality targets have been identified and ongoing or planned remediation projects have been used to estimate whether or not these targets are attainable.
- CCWF (2002) completed a restoration action strategy and program for the Upper Clear Creek Watershed which led to the development of the USEPA (2003) Action Memorandum. This agreement formed the basis of CCWF's mission and subsequent project activities in the watershed. Proposed specific actions are listed in Section V of the USEPA (2003) Action Memorandum.
- 8. An appendix to the CCWF (2002) document was a "baseline" healthy-stream profiles for selected "critical" (that is, 303(d) listed) stream segments by CCC (2002). This was an evaluation of existing watershed conditions (using available water-quality data from monitoring programs). The purpose is to allow a consistent approach for evaluating watershed changes as mine-related remediation progresses. This has been visualized as a 10-year program and is conceptualized as a "target-zone approach".

Monitoring Component (Watershed-Plan Component 6)

[Note: This modified section was added as a Phase-II effort for updating Section 9 (Component 6) of the Upper Clear Creek Watershed Plan.]

- 1. For the 1994-2004 period, the TMs monitoring component for the upper Clear Creek watershed was linked to the overall water-quality monitoring program coordinated with the Standley Lake Cities and with analytical support from the USEPA (Clear Creek Watershed/Standley Lake Monitoring Committee, 2004; USEPA, 1999).
- Historical basic TMs data for the watershed under this monitoring component were reported in an appendix to the Clear Creek Watershed Management Agreement's (2002) 2001 Annual Report. In addition, these data have been used for a series of watershed studies [Abel and Steele (2003); CCC (2006); Huyck and others (1999); Steele (2000); Steele and others (1996; 1998; 2000); and TDS Consulting Inc. (2000; 2002; 2002a; 2002b; 2003; 2003a; 2004; 2004a; 2005 (*this Watershed Plan*); 2006); Upper Clear Creek Watershed Advisory Group (2001); USEPA & CDPHE (1997a)].
- 3. The UCCWA-SLCs 2005 monitoring program included a reduced TMs component, when compared with the previous (1994-2004) period of record. A high-flow (HF) sampling survey was completed on 5/26/05, and a low-flow (LF) sampling survey was completed on 10/13/05). Each survey includes collecting samples at 17 sites (see SAP). This schedule is in contrast with the 8 field sampling surveys completed in previous years, with four surveys each for the HF and LF seasons. A monitoring site for Trail Creek (CC-31) and the Argo discharge (CD-01/-02) has been added (at the request of TDS) for inclusion in this monitoring-program component.
- 4. With analytical support from USEPA, UCCWA (through TDS) supported continuing the six sampling-survey dates during 2005 and 2006 not included in the reduced TMs monitoring-program component (item 3 above). Samples are collected at 10 of the 17 sites included in this component, with additional samples collected at Trail Creek (CC-31) and the Argo Treatment Facility discharge (site CC-99, sometimes coded as samples with ID#s CD-01/-02). TDS with field assistants completed sampling surveys for 2/10/05, 4/05/05, and 6/15/05. In a transition mode, TDS assisted USEPA-ESAT field staff in the next sampling survey, completed on 7/18/05. ESAT then conducted the 8/16/05 and 12/1/05 field data-collection surveys, to complete the TMs program component for the 2005 calendar year. A similar strategy for this monitoring component is being implemented during 2006 (see item 8 below).
- 5. CDOW (Shannon Albeke) has indicated that their WQ-sampling program component for 2005 has been reduced to a quarterly schedule (from a monthly sampling schedule for previous years) for its Clear Creek watershed program. The fish study again is scheduled for low-flow conditions in the late summer/fall period of 2005.
- 6. The USGS stream-gaging program may undergo modifications, beginning with the 2006 water year (WY, starting on October 1, 2005). Prioritization-ranking and recommendations are discussed in a technical memorandum submitted to UCCWA (TDS Consulting Inc., 2005b).
- 7. The mainstem Clear Creek at Kermitts gage (site CC-40) will continue to operate during the 2006 water year, with financial support through UCCWA from several sources.

- 8. The UCCWA-SLCs 2006 monitoring program (see item 3 above) will in general be consistent with the 2005 program, with supplemental data obtained at three sites (CC-49, CC-50, and CC-59) using automatic-sampler instrumentation.
- 9. Additional information, action items, and recommendations, resulting from 1/12/06 after-UCCWA meeting regarding the 2006 monitoring program are as follows:
 - a. USEPA (Mike Holmes, with use of ESAT or follow-on contractor) will continue its 2005 support of the TMs component of the monitoring program.
 - b. A subcommittee (tentatively, T.D. Steele, M.W. Crouse, Vicki Coppage, along with representation by CDPHE-HMWMD, SLC, and hopefully CDOW) will revise, as needed, the UCC Monitoring Plan referenced in annual watershed-agreement reports to the CDPHE-WQCC. Coordination to try to obtain consensus of the various monitoring-program components will be sought through this action item.
 - c. Details of the trace-metals component for 2006 include the following aspects:
 - i. Sampling for six field surveys at 11 monitoring sites CC-15, CC-20, CC-25, CC-26, CC-30, CC-31, CC-34, CC-40, CC-45, CC-50, and CC-60. Planned field-sampling survey dates are 2/6/06 *(completed)*, 4/4/06, 7/10/06, 8/15/06, and 12/7/06. USEPA will prepare chain-of-custody (CoC) forms for these surveys and the field sampling and processing will be conducted by the USEPA contractor (currently, ESAT).
 - ii. USEPA laboratory analyses for TMs consistent with recent years.
 - iii. Sampling by the USEPA contractor for Trail Creek (CC-31) for the two UCCWA-SLC surveys that doesn't include this site tentatively scheduled for 5/25 (high-flow) and for 10/18 (low-flow).
 - iv. Sampling for all eight sampling surveys at selected wastewater treatment plants (WWTPs) in the watershed: tentatively, Georgetown, Idaho Springs, and Black Hawk/Central City Sanitation District. Vicki Coppage (Golden) and USEPA-ESAT (Mike Holmes at USEPA Region VIII, in conjunction with Marti McComb, USEPA and/or Kelly Head at the Laboratory) will coordinate with each other to ensure that WWTP sample coverage for TMs for the sampling surveys is accomplished for those WWTPs agreeing to participate during 2006.
 - v. T.D. Steele will continue to update TMs data files and transmit these to interested parties, including regulatory contacts (WQCD, USEPA).
 - vi. Pending continuing funding support, TDS Consulting Inc. will complete a 2006 Trace-Metals Assessment Addendum, once TMs data are made available (at least through 10/06), for period-of-record comparison of seasonal and year-to-year loads and concentrations for six monitoring sites and for five selected TMs (Pb, Mn, Zn, Cu, and Zn). This proposed addendum would be completed on/before 2/07.
 - d. It is recommended that the staff gage be retained at the Fall River sampling site (CC-30) and that one be installed at the Trail Creek sampling site (CC-31) for tracking seasonal flow variations and to obtain streamflow estimates. A special TMs-related study of this subarea of the watershed is being funded by the CCWF and is scheduled for implementation (CCC, 2006).

Sources of Technical and Financial Assistance (Watershed-Plan Component 4)

Potential funding sources (Non-CERCLA NPS Control Efforts, Task 10) for addressing the watershed's water-quality concerns and/or mining-related impacts include, but are not limited to, the following:

- 1. National USEPA "Targeted-Watershed" Grant.—CCWF has submitted proposals to this program in the past; no application has been successful, however.
- 2. USEPA Regional Applied Research Effort (RARE) Grant Program.—Annual solicitation through Region 8 the promotes scientific interaction between USEPA's ORD labs and centers (Mike Holmes, USEPA, oral commun., 7/27/05). The annual submittal date for preliminary project proposals is August 1 (2005), with awards funding between 4-6/06.
- 3. Colorado Watershed Protection Fund (Program Grant).—This fund was established by the 2002 Colorado General Assembly (SB 02-087). The grant program is administered jointly by the Colorado Water Conservation Board (CWCB) and the Water Quality Control Commission (WQCC) of the CDPHE. The two grant categories are: (1) project grants; and (2) planning grants. Application evaluation criteria also are provided. For each annual cycle, the deadline for application submittal is April 30th, and grant awards are made on September 30th.
- 4. USEPA Region VIII Consolidated Funding Process (CFP) Grant.—CCWF has submitted proposals to this program in the past; however, no application has been successful.
- 5. Watershed Protection Approach Funding Matrix (CCWF, 1993, 9-p. Appendix).—This was developed by participants of the spring-1992 USEPA-OWOW conference for exploring options for funding watershed-protection activities.
- 6. CDPHE-WQCD Nonpoint Source Program (NPS) 319 Grant.—UCCWA has obtained 310 grants for a QUAL2E model application (Phase III) and for preparation of a Watershed Plan (5 of 9 elements). A Phase-2 Watershed Plan grant application may be considered for preparation/submittal in November 2005.
- 7. DMG-CCWF and CSM-EPICS Projects
- 8. [Molson] Coors Brewing Company 2005 Clear Creek Forum (CCF) Grant
- 9. Phelps Dodge-Henderson Mine Grant/Match In-Kind.—During 2005, PD-Henderson provided a supplemental contribution to UCCWA (\$5K).
- 10. U.S. Forest Service (USFS) Grant (funds from USEPA; administered through Clear Creek County).
- 11. Superfund (through CDPHE-HMWMD)
- 12. USEPA Brownfields
- 13. NREL High-Altitude Demonstration Project
- 14. Supplemental Environmental Projects (SEPs) in lieu of fines
 - Example, Iowa Tank Lines spill
 - Others add as available
- 15. Metals trading for credit (see CCWF trading proposal, submitted to USEPA)?
- 16. Franklin Mine Bond (for reclamation work within permitted area)

- 17. Donations of money or land/easements/rights-of-way
- 18. Partnering with Trout Unlimited (and others?)
- 19. Clear Water Act (CWA) Section 104(b)(3).--Assessment and Watershed Protection Support, includes all levels of government and private organizations. Resources (funds) also may be used for Interagency Agreements (IAGs) and contract support. Another aspect is termed as Water-Quality Cooperative Agreements [66.4631]; these involve unique investigations, special one-time studies, pilots and demonstrations to implement NPDES-related activities. The 1-to 2-year demonstration projects should support NPDES implementation, development/implementation of BMPs for stormwater, and overflow/stormwater discharge-control programs in general.
- 20. CWA Section 104(g).—Small community outreach; inventive grants to develop or expand small-community outreach programs. These are intended to encourage the establishment or enhancement of state small-community outreach programs.
- 21. Safe Drinking Water Act (SDWA) Section 1443(a)(1).—Small Public Water-System Supervision [66.432]. Focus is on state drinking-water programs (program costs, technical assistance, laboratory capability, enforcement, and data management.
- 22. SDWA Section 1442(b).—Wellhead Protection (WHP); these are demonstration projects aimed as assisting (small) municipalities to design and implement a wellhead protection program. Eligible activities include delineation of WHP areas, identifying sources of contamination, public education, development of ordinances for WHP, WHP contamination-source surveys, and GIS mapping of WHP areas.
- 23. Colorado Division of Local Government (CDLG), Department of Local Affairs.—Technical Assistance, Colorado Water Needs (Categorization) List (CDLG, 1998a) and Colorado Sewer Needs (Categorization) List (CDLG, 1998b). These list cities, towns, special districts, and unincorporated communities that supply water or operate and/or manage wastewater systems or need such systems. Criteria used to categorize each community's needs are (a) immediate or (b) longer-term/emerging. These lists are updated quarterly by a committee formed in 1979 at the Governor's request.
- 24. Assessment of funding vehicles (Mulhern MRE, Inc., 1994) prepared for the Chatfield Basin Authority.

UCC-WAG (2001, Chapter 13 and Table B-1) provided a useful summary of costs estimates for various proposed remediation projects throughout the upper Clear Creek watershed. In selected cases, updated investigations have provided more realistic costs. An example is the OU4 RI/FS completed under the auspices of the CDPHE-HMWMD (CDPHE and USEPA, 2004). For this Superfund's preferred remediation alternative (4B, involving predominately projects in the North Fork Clear Creek subwatershed), capital costs of \$11.8 million and O&M costs of nearly \$11.5 million (present value, annualized \$926,000) were estimated. Preliminary engineering-design work for high-priority components of this alternative is currently proposed. For the Virginia Canyon area (extraction costs only, \$514,000, according to CDM (1991)), remediation work is underway during the 2005 summer season.

Public Outreach – Summary of 319-Grant Workshop

An overview presentation of the Phase-I tasks completed in fulfillment of this 319 grant was provided by Dr. Steele of TDS Consulting Inc. at the Clear Creek Watershed Forum 2005 on September 27, 2005. The report's title sheet, table of contents, and executive summary were included as a handout in the Forum packet. At the conclusion of this presentation, Forum participants were asked to provide questions and comments on the material provided by this overview on comment forms included in the workshop (Forum) handout packet. The Project Administrator, Ms. Chris Crouse, has summarized questions and comments from submitted comment forms (see Section 5)

References

- Abel, R.J., 2004, OU4 Feasibility Study Overview: PowerPoint Presentation to Upper Clear Creek Watershed Association (UCCWA), June 10 (monthly meeting), 14 viewgraphs.
- Abel, R.J. and Steele, T.D., 2003, Assessing the Improvements to the Water Quality of Clear Creek in Colorado Resulting from Superfund Efforts that Include the Argo Tunnel Water Treatment Plant: PowerPoint Presentation before the Association of Economic Geologists (AEG) Annual Meeting, Vail, CO, September 16-19.
- Advanced Sciences, Inc., 1993, Upper Clear Creek Basin/Standley Lake Water-Quality Assessment: Final Report, Prepared for the Upper Clear Creek Basin Association, September 22, 11 p., 10 figures, and 5 tables. *[ASI Project No. 8792.01]*
- Allen, D.B., 1999, Quality Assurance Plan for Upper Clear Creek Watershed Association (Metals Only), Clear Creek Watershed: U.S. Environmental Protection Agency, Region VIII, January 28, 13 p. [TDS Files]
- AMEC, 2004a, Virginia Canyon, Groundwater Remediation Project Big 5 Collection and Conveyance System: Prepared for CDPHE-HMWMD, February 28, 16 sheets. [R.L. Office, Review Copy]
- AMEC, 2004b, Virginia Canyon, Surface and Ground Water Remediation, North-South Conveyance System: Prepared for CDPHE-HMWMD, February 28, 15 sheets. [R.L. Office, Review Copy]
- Aquatics Associates, Inc. (AAI), 2006, Macroinvertebrate Results for Selected Sites in the Upper Clear Creek Watershed, Fall 2005: Memorandum to Tony Lucero, Henderson Mine (Phelps Dodge Corporation), February 15, 6 p. *[TDS Files]*
- Arapaho and Roosevelt National Forests and Pawnee National Grassland, 2004, Preliminary Assessment Report – West Gold Mine, Clear Creek County, Colorado: Abandoned Mine Lands Program, November, 15 p. [CCWF Files]
- Aro, Preston, Nurniyazov, Nurlan, and Smith, Dave, 2004, Remediation of the Silver Cycle Mine Site: Colorado School of Mines (CSM) EPICS Team 2, Prepared for Ed Rapp, President, Clear Creek Watershed Foundation (CCWF), December 8, 18 p. and Appendices A through E. [CCWF Files]
- Atlas Design Group (ADG), 2005, Remediation and Revitalization of the McClelland Tunnel, Dumont, Colorado: Colorado School of Mines (CSM) EPICS 251, Sections C & D, May 2, 26 p. and Appendices A (17 figures) and B (tables). [CCWF Files]

- Bell, H.L., 1999, A Chemical, Physical and Biological Assessment of the Clear Creek Basin, Colorado – 1989-1997: Draft Report Prepared for the U.S. Environmental Protection Agency (USEPA), Region VIII, Technical and Management Services Laboratory, Prepared by Lockheed Martin Technology Services, EPA Region VIII ESAT, Denver, CO, January, 76 p., 72 tables, 298 figures, and Appendix Figures A1-A160. [LRCWE Library CCC 244]
- Butler, B.A., 2005, Assessing the Fate and Transport of Metals in a High-Gradient Acid-Mine Drainage Impacted Mountain Stream, North Fork Clear Creek, Colorado: Ph.D. Dissertation, Colorado School of Mines (CSM), 263 p. [CD rom, TDS Files]
- Camp Dresser & McKee Inc. (CDM), 1990 (draft), Final Clear Creek Phase II Remedial Investigation: Prepared for CDPHE-HMWMD and USEPA, April, Section 10.0 – Modeling the Clear Creek System, 42 p. (including 19 figures). *[TDS Ref Files]*
- Camp Dresser & McKee Inc. (CDM), 1991, Final Clear Creek Phase II Feasibility Study Report: Prepared for CDPHE-HMWMD and USEPA, September, Vol. 1 – text, 5 sections, 2 plates; Vol. 2 – Appendices A-F. *[LRCWE CCC 130]*
- Canton, S.P., 2004, Rebuttal Testimony of Steven P. Canton on Behalf of Climax Molybdenum Company: In the Matter of Revised Water Quality Classifications Standards and Designations for the South Platte River Basin, Laramie River Basin, Republican River Basin, and Smoky Hill River Basin, Regulation, No. 38 (5 CCR 1002-38), *undated*, 5 p. *[TDS Files]*
- Clear Creek Consultants (CCC), 2006, Letter Proposal Clear Creek Copper Loading Study: Submitted to Mr. Ed Rapp, President, CCWF, January 30, 3 p.
- Clear Creek Watershed Forum (CCWF), 1993, Resource Manual, Clear Creek Watershed Forum II, October 15, I. Fact Sheet on Watered Protection Approach, 2 p.; Appendix of Funding Sources, January (Draft), 9 p. [TDS Files]
- Clear Creek Watershed Foundation (CCWF), 2002 *(undated)*, Watershed Restoration Action Strategy and Program (A Good Samaritan Action Plan): Cover Sheet and 8 p. with Appendix 1 (7-p. memorandum with attachments by Clear Creek Consultants). *[CCWF Files]*
- Clear Creek Watershed Foundation (CCWF), 2004a, Gilson Gulch Watershed Restoration Action Strategy (WRAS) and Initial Workplan: Memorandum for the Record, April 12, 5 p. [TDS Files]
- Clear Creek Watershed Foundation (CCWF), 2004b (*draft*), Watershed-Based Plan for Clear Creek Watershed: November 30, 16 p.

- Clear Creek Watershed Foundation (CCWF), 2006 *(approved; contract pending)*, Gilson Gulch Orphan Mine/Orphanage Remediation: Project Implementation Plan (based upon NPS Project Proposal dated 11/15/05), Submitted to CDPHE-WQCD, March 16, revised June 15, 6 p. and 8 attachments.
- Colorado Department of Public Health & Environment (CDPHE), 1995, Summary, Sampling Activities Report, Lion and North Empire Creeks, Clear Creek County, Colorado: Hazardous Materials and Waste Management Division (HMWMD), Clear Creek/Central City Superfund Site, August 16, 1994 (revised January 3). [LRCWE CCC 105]
- Colorado Department of Public Health & Environment (CDPHE), 1998, Final Design for Big Five Waste Reclamation, Clear Creek County, Colorado: Hazardous Materials Waste Management Division (HMWMD), Funded by Grants from the U.S. Environmental Protection Agency (USEPA), October, Division 1 – General Requirements. *[LRCWE CCC 108]*
- Colorado Department of Public Health & Environment (CDPHE), 2000a, Waldorf Mine, Analytical Results Report: Prepared for U.S. Forest Service, Rocky Mountain Region, July, 17 p., 2 figures, 6 tables, and Appendices A and B. *[USEPA-1999; TDS Ref Library; to be placed in LRCWE Library; see also CCC 22]*
- Colorado Department of Public Health & Environment (CDPHE), 2000b, Water Quality in Colorado: Water Quality Control Division, 16 p. [CEPHE-WQCC website]
- Colorado Department of Public Health & Environment (CDPHE), 2002a, Colorado Total Maximum Daily Load and Wasteload Allocation Guidance: Prepared by the Water Quality Control Division (WQCD), February, 16 p. *[TDS Files]*
- Colorado Department of Public Health & Environment (CDPHE), 2002b (*draft*), Total Maximum Daily Load Assessment, Clear Creek (*Stream Segment 2*), Clear Creek County, Colorado: Prepared by the Water Quality Control Division (WQCD), April, 23 p. [TDS Files]
- Colorado Department of Public Health & Environment (CDPHE), 2003, St. Mary's Project, Best Management Practices Project (Mining): <u>in</u> 10 Years of Success, Project Profiles NPS – Implementation of Colorado's Nonpoint Source Program: Prepared by the Water Quality Control Division (WQCD), Contact, Julie Annear, Colorado Division of Minerals and Geology, p. 32. [TDS Files]
- Colorado Department of Public Health & Environment (CDPHE), 2004, Status of Water Quality in Colorado – 2004, The Update to the 2002 305(b) Report: Prepared by the Water Quality Control Division (WQCD), April, 26 p. and Appendices A-C. [TDS Library]

- Colorado Department of Public Health and Environment (CDPHE), 2005, Colorado's Watershed Cookbook – Recipe for a Watershed Plan: Water Quality Control Division, Nonpoint Source Program, September 7, 8 sections and Appendices A through H. [TDS Copy/UCCWA Files]
- Colorado Department of Public Health & Environment (CDPHE) and U.S. Environmental Protection Agency (USEPA), 2004, Central City/Clear Creek Superfund Site, Operable Unit 4 – Record of Decision: September 30 (undated), 111 p. [TDS Files; Ron Abel, CDPHE-HMWMD e-Mail dated 2/5/05; forwarded to CC-UCCWA via e-Mail, 2/5/05]
- Colorado Division of Local Government (CDLG), 1998a, Colorado Water Needs List: Department of Local Affairs, Technical (Water and Wastewater) Assistance, 1313 Sherman Street, Room 521, Denver, CO 80203 [303-866-2156], February 12, 13 p. *[TDS Files; to LRCWE Library]*
- Colorado Division of Local Government (CDLG), 1998b, Colorado Sewer Needs List: Department of Local Affairs, Technical (Water and Wastewater) Assistance, 1313 Sherman Street, Room 521, Denver, CO 80203 [303-866-2156], February 12, 11 p. *[TDS Files; to LRCWE Library]*
- Colorado Division of Minerals and Geology (CDMG), 2005, Best Management Practices: February 20. [CDMG website, www.mining.state.co.us/pdfFiles/bmp.pdf]
- Colorado Division of Minerals and Geology (CDMG), 2006 *(approved; contract pending)*, Castleton Mine Dump Remediation: Project Implementation Plan (based upon NPS Project Proposal dated 11/15/05), Submitted to CDPHE-WQCD, March 29, 7⁺ p. and attachments.
- Colorado Division of Wildlife (CDOW), 1991, Clear Creek Basin The Effects of Mining on Water Quality and the Aquatic Ecosystem: 104 p. and 4 appendices. *[need to find]*
- Colorado Division of Wildlife (CDOW), 2006, Fish-Population Estimates, Clear Creek, 2001-2004: e-Mail to TDS Consulting Inc. dated 3/22/06, 1 table and 2 graphs. *[TDS Files]*
- Colorado School of Mines (CSM), undated (2005?), Franklin Mine and Mill Site Reclamation and Revitalization: EPICS Team 4, Prepared for Clear Creek Watershed Foundation (CCWF), 20 p. and Appendices A through D. [CCWF Files; see useful reference list]
- The Colorado Water Quality Forum, 1994, Colorado Watershed Protection Approach: Working Paper, University of Colorado at Denver, Center for Public-Private Sector Cooperation, July 1, 55 p. and Appendices A through E. *[TDS Library]*

- Crouse, M.W., 2006, Letter Proposal Clear Creek Copper Loading Study: Clear Creek Consultants, Letter Proposal to the Mr. Ed. Rapp, Clear Creek Watershed Foundation, January 30, 2 p.
- CWT Corporation, 2002, The Remediation of Mine Dump Sites in Virginia Canyon and Russell Gulch: Report submitted to the Clear Creek Watershed Foundation (Authors: Roland Thurston, Saif Alsowaidi, Erick Ehler, and Haitham Al-Harbi), May 24, 58 p. and Appendices A through C. [CCWF Library]
- Eisener, Garrett, Gregg, Brandon, and Laubhan, Rissa, 2005, Engineering Evaluation/Cost Analysis for the Remediation and Revitalization of the West Gold Mine Site, Idaho Springs, CO: Colorado School of Mines (CSM) EPICS 251 Section C, Prepared for Edward G. Rapp, President, CCWF, and for Andrew Archuleta, Manager, Abandoned Mines Program (USFS), May 2, 19 p. and Appendices 1 through 3. [CCWF Files]
- Fliniau, Holly and Norbeck, Carl, 1998, State of the Watershed Report 1997, Clear Creek, Colorado; Prepared by Cooperation between the USEPA and CDPHE, 39 p., 9 tables, and 15 maps. *[TDS Files; CCWF Library; LRCWE CCC xxx]*
- Frohardt, Paul, 2004, Updated Draft Final Action Documents: Colorado Department of Public Health & Environment (CDPHE), Water Quality Control Commission (WQCC), August 16, transmittal letter, table (draft 8/10/04), 15 p. [TDS Files]
- Golder Associates Inc., 2001, Repository Site Characterization Assessment, Clear Creek/Central City Superfund Site: Project No. P-8609-I, Prepared for CDPHE-HMWMD, October 31, 10 sections, 2 tables, 16 figures, 3 exhibits, and Appendices A through I. *[LRCWE CCC 239]*
- Hall, Thomas, Blackmon, Dillon, Edwards, Josh, and Karras, Dane, 2005, Design Report on Gilson Gulch: Colorado School of Mines (CSM), Team 2, EPICS 251, Prepared for Dennis Lunberry, Mayor, Idaho Springs, and for Ed Rapp, President, CCWF, 4 May, Executive Summary (3-p.), 12 p., and 30 appendices. [CCWF Files]
- Herron, James, 2001, St. Mary's Project: Contract #WQC940801, Section 319 Nonpoint Source Pollution Control Program, Watershed Project Final Report, Prepared by the Colorado Division of Minerals and Geology (CDMG), 18 p. and Appendices 1 and 2. *[TDS Files; to be placed in LRCWE Library]*
- Herron, James, 2004, Gilson Gulch Water Quality Investigations: CDMG Proposal in Cooperation with CSM (Thomas Wildeman). December, 11 p. [TDS Files; modified for CCWF funding as a Phase-I (preliminary) characterization study].
- Herron, James, Jordet, J.A., and Wildeman, T.R., 2001, Reclamation Feasibility Report Virginia Canyon: Colorado Division of Minerals and Geology (DMG), Denver,

CO, December, 60 p. and Appendices 1-9. [DMG files; LRCWE CCC 263, 7/01 draft; TDS added final (12/01) report copy and returned to LRCWE (3/29/05)]

- Huyck, H.L.O., 1999, Review of BASX Systems, as Developed by Stewart Envronmental: Report Prepared for the Upper Clear Creek Watershed Advisory Group (UCC-WAG), 12 p., 9 tables, and 6 figures. *[need to find; check UCCWA]*
- Huyck, H.L.O., Steele, T.D., and Fliniau, Holly, 1999, Use of Long-Term Metals and Fauna Studies to Set Priorities for Site Cleanup in the Clear Creek/Central City Superfund Site, Colorado: Geological Society of America (GSA), Abstracts with Program, Vol. 31, No. 7, p. 435.
- Hydrosphere Resources Consultants, 1997, Orphan Sites Feasibility Study Possible Approaches to Evaluating and Implementing Unlike Transactions: Phase III, Task 3, Submitted to The Conservation Fund, March, 40 p. and Appendices A through C. [TDS files]
- Integrated Laboratory Systems, Inc., 2005, Ecotoxicological and Water Quality Evaluation of Clear Creek and the North Fork Clear Creek, Colorado – Clear Creek/Central City Superfund Site, Operable Unit 4, August 2003: TDF-5021, DCN No. 80-ESAT-1438, Contract No. 68-W-01-029, EPA Region 8 ESAT, Prepared for U.S. Environmental Protection Agency (USEPA), Region 8, Denver, CO and Colorado Department of Public Health and Environment (CDPHE), Hazardous Materials and Waste Management Division (HMWMD), Denver, CO, July, 25 p., 30 tables, and 9 figures. *[TDS Files (John Calanni, EPA-ESAT)]*
- Janneck, Eberhard, *undated (2003?)*, Freilandversuchsanlage zur Behandlung Saurer Berghauwässer: G.E.O.S. Freiberg Ingenierugesellschaft mbH, Umwelt Stiftung, 9 S. [TDS Files]
- Judy, S.A., 2004, After-Action Report of Dibbens Mill and Sydney Tunnel Sites Reclamation Project: Technical Memorandum submitted to the Clear Creek Watershed Foundation, Prepared by Mining & Environmental Services LLC, December 3, 8 p., 1 figure, and 1 table. [CCWF Files, Ed Rapp, 2/17/05]
- Keating, Stephen, 1995, Pipeline Firm Wants Mine Claim Owners to Pay for Pollution: The Denver Post, April 13, pp. 1D & 7D. [TDS Files; involves Big 5 clean-up litigation and costs (\$1.7 million).]
- Lehnertz, C.S., 1991, The Effects of Mining on Water Quality and the Aquatic Ecosystem Clear Creek Basin: Colorado Division of Wildlife (CDOW), March, 100 p., literature citations (4-p.), Appendices A through D. *[need to find this]*
- Lewis, J.D., 1995 (preliminary draft), North Clear Creek Surface Water Investigation: Colorado Department of Public Health and Environment (CDPHE), Prepared in

Cooperation with the U.S. Environmental Protection Agency (USEPA), Volume 1 Text; Volume 2 Appendices. *[LRCWE CCC 187 v. 1 (ex-TDS Files) & v. 2]*

- Lewis, J.D., 1998 (draft), October 1997 Surface Water Investigation, Burleigh Tunnel to the Georgetown Reservoir: Prepared by CDPHE-HMWMD in Cooperation with the USEPA, August 21, 35 p., 12 tables, 21 figures, and Appendices 1 through 3. *[need to find/review]*
- Lewis, J.D., 1999, North Clear Creek Supplemental Surface Water Investigation: Data Summary Report, CDPHE, Prepared in Cooperation with the USEPA, June 18, 25 p., 7 tables, 21 figures, and Appendices 1 through 4. *[need to find/review]*
- Lewis, J.D., 2001a (draft), Low-Flow Monitoring Report, September 2000 Mainstem and Burleigh Tunnel Sampling Event: Prepared by CDPHE-HMWMD in Cooperation with the USEPA, January 16, 22 p., 5 tables, and 5 figures. *[need to find/review]*
- Lewis, J.D., 2001b (draft), Virginia Canyon Ground Water Investigation: CDPHE-HMWMD, Prepared in Cooperation with the U.S. Environmental Protection Agency (USEPA), Region VIII, October 5, 48 p., 7 tables, 35 figures, and Appendices 1 through 3. *[JDL Files]*
- Lewis, J.D., 2002a (draft), Virginia Canyon Ground Water Investigation, October 2001 Sampling Event: CDPHE-HMWMD, Prepared in Cooperation with the U.S. Environmental Protection Agency (USEPA), Region VIII, April 30, 35 p., 6 tables, 33 figures, and Appendices 1 and 2. [JDL Files]
- Lewis, J.D., 2002b (draft), November 2001 Clear Creek Surface Water Investigation Analytical Results Report: CDPHE-HMWMD, Prepared in Cooperation with the U.S. Environmental Protection Agency (USEPA), Region VIII, October 16, 38 p., 12 tables, 34 figures, and Appendices 1 and 2. *[LRCWE CCC 315]*
- Lewis, J.D., 2003, Burleigh Tunnel Remedial Investigation Addendum to the Phase-II Remedial Investigation & Feasibility Study: CDPHE-HMWMD, Prepared in Cooperation with the USEPA, Region VIII, Denver, CO, April 9 (draft), 50 p., 2 tables, and 21 figures. [CCWF library]
- Lewis, J.D., 2005 (*draft*), Clear Creek/Central City Superfund Site, Clear Creek Watershed, Performance Monitoring Sample and Analysis Plan: CDPHE-HMWMD, Superfund Remedial Programs Section, March 28, 14 p., 4 tables, and 1 map. [JDL e-Mail transmittal to TDS, 3/28/05]
- McLaughlin Ricón, 2005, Clear Creek County, Idaho Springs, Colorado Virginia Canyon East-West Conveyance: Prepared for CDPHE-HMWMD, March, 4 Drawings. [R.L. Office Review Copy]

- Medine, A.J., 1992, Contaminant Transport Modeling in the Clear Creek Basin North Clear Creek System: Final Report, USEPA START Program, Special Investigation: Prepared for Holly Flineau, RPM, Clear Creek Superfund Site, Region VIII, Under Direction of E.R. Bates, Technical Support Branch, EPA Contract No. 68-C9-0036, Work Assignment No. 2-61, September 30. [LRCWE CCC 242 (missing); document mailed to TDS from Mike Holmes of USEPA, 2/25]
- Medine, A.J., 1995, Chemical and Physical Assessment of North Clear Creek during July 1994: Prepared for the U.S. Environmental Protection Agency (USEPA), Risk Reduction Engineering Research Laboratory, Contract No. 68-C2-0108, Work Assignment No. 4-13, Task 3, Water Science and Engineering, Boulder, CO, under contract to IT Corporation, Cincinnati, OH, May, 42 p., tables, figures, and Appendices A through E.
- Medine, A.J., 1996, Chemical, Physical, and Biological Assessment of Clear Creek Selected Tributaries in the Clear Creek Basin During Fall 1995: Final Report to the U.S. Environmental Protection Agency (USEPA), Contract No. 68-C2-0108, Work Assignment No. 4-13, Task 3, Water Science and Engineering, Boulder, CO, under contract to IT Corporation, Cincinnati, OH, September, 31 p., 6 tables, 64 figures, and Appendices A through F. [LRCWE CCC 91]
- Medine, A.J., 1997a, Calibration and Application of WASP4/META4 to Contaminant Transport and Water Quality Problems in North Clear Creek: Technical Memorandum Prepared by Water Science and Engineering, Boulder, CO, Technical Support at the Clear Creek/Central City Superfund Site, May 2, 11 p., 11 figures, and Appendix A. *[TDS Files; to be placed in LRCWE library]*
- Medine, A.J., 1997b, Calibration and Application of WASP4/META4 to Contaminant Transport and Water Quality Problems in Mainstem of Clear Creek: Technical Memorandum Prepared by Water Science and Engineering, Boulder, CO, Technical Support at the Clear Creek/Central City Superfund Site, May 8, 16 p. and 7 figures. *[TDS Files; to be placed in LRCWE library]*
- Medine, A.J., 1999a, Simulation of Water Quality Effects of Sediment and pH Control in North Clear Creek Using WASP4/META4: Technical Memorandum, Prepared by Water Science and Engineering, Boulder, CO 80302, Technical Support at the Clear Creek/Central City Superfund Site, Prepared for U.S. Environmental Protection Agency (USEPA), Land Remediation & Pollution Control Division, National Risk Management Research Laboratory, Mr. Edward Bates, Project Manager, Cincinnati, OH, January 8, 16 p. and Figures 1 through 15, and Appendix A (META4 Calibration File for North Clear Creek, March 1995). [TDS Files; to be placed in LRCWE library]
- Medine, A.J., 1999b, Addition of New State Variables and pH Simulation Capabilities to the Metal Exposure and Transformation Assessment Model META4 Version 3: Handout Materials, USEPA Region VIII Meeting Presentation, January 15, 20 p.

- Medine, A.J., 1999c, Variable pH Simulation Capabilities for the Metal Exposure and Transformation Assessment Model – META4 Version 3: Water Science and Engineering, EPA Order No. 8C-R307-NNSX, Reference No. ACE005/QT-OH-98-000647, Prepared for the U.S. Environmental Protection Agency (USEPA), National Risk Management Research Laboratory, Land Remediation & Pollution Control Division, Cincinnati, OH 45268, May 25, 20 p., and 14 figures. [TDS Files]
- Medine, A.J., 2001, The Significance of Contaminated Sediments Within Sub-Drainages of the North Fork Clear Creek Watershed to Water Quality Issues: Medine Environmental Engineering, Boulder, CO 80302, Prepared for CDPHE-HMWMD, Mr. Ron Abel, Project Manager, Denver, CO 80246-1530, February 9, 20 p., 16 tables, 3 figures, and Appendices A through D. [TDS Files; to be placed in LRCWE library]
- Medine, A.J., 2004, Modeling the Effectiveness of Remedial Alternatives to Reduce Mine Waste Impacts on North Clear Creek, Colorado: Prepared by Water Science and Engineering, Boulder, CO 80302, Prepared for USEPA, NRMRL -- Land Remediation and Pollution Control, Order No. 2C-R351-NASA, Mr. D.J. Reisman, Project Officer, Cincinnati, OH, June 24, 33 p. and 72 figures, and Appendices A and B. [TDS Files (draft); to be placed in LRCWE library; also reproduced (revised final) as Tt-RMC (2004b), Appendix E]
- Mulhern MRE, Inc., 1994, Chatfield Basin Authority Funding Alternatives Review: Prepared for Chatfield Basin Authority, Englewood, CO, June, 14 p. and Exhibit A. *[TDS Files]*
- Orphan Site Steering Committee, 1996, Orphan Catalog Cleaning Up Orphan Sites for Credit Project: Prepared for the Clear Creek Watershed Forum, April, 29 p. [Appendix to Hydrosphere report, TDS files; to be provided to LRCWE]
- Pearson, Ron, McCaig, Robert, and Prince, Norm, 1997, Preliminary Assessment, Waldorf Mine/Santiago Mine, Clear Creek County, Colorado: Prepared by U.S. Bureau of Reclamation, Technical Service Center, Denver, CO, Prepared for USDA Forest Service, Arapaho National Forest, Rocky Mountain Region, Denver, CO, January 21, 13 p. and 23 appendices. [LRCWE CCC 22]
- Raisch, J.W., Esq., 2004, Rebuttal Statement of Climax Molybdenum Company: In the Matter of Revised Water Quality Classifications Standards and Designations for the South Platte River Basin, Laramie River Basin, Republican River Basin, and Smoky Hill River Basin, Regulation, No. 38 (5 CCR 1002-38), June 24, 5 p. [TDS Files]
- Rocky Mountain Consultants, Inc. (RMC), 2002, Final Data Review and Evaluation Report, Remedial Investigation/Feasibility Study, Clear Creek/Central City

Superfund Site – Operable Unit 4: Prepared in Cooperation with Colorado Department of Public Health and Environment (CDPHE), Hazardous Materials and Waste Management Division (HMWMD) and the U.S. Environmental Protection Agency (USEPA), Region VIII, August, 88 p., figures, tables, and Appendix A. *[TDS Files (RL loan); to be provided to LRCWE]*

- Sares, M.A., undated (1995?), Little Bear Mine Waste Characterization: Summary Report, Colorado Geological Survey (CGS), Denver, CO, 12 p. and Appendix A. *[LRCWE CCC 251]*
- Severson, R.C. (Compiler), 1991, Field Trip Guide for Surface-Water Contamination and It's Remediation Near Idaho Springs, Colorado: U.S. Geological Survey Open-File Report 91-426, Prepared for the Annual Meetings of the Soil Science Society of America, Division A-5, Environmental Quality, Denver, CO, October 30, 46 p. (LRCWE CCC 162)
- Steele, T.D., Abel, R.J., and Fendel, K.T., 2004, Upper Clear Creek Watershed (Colorado) – A Decade of Systematic Monitoring: National Water Quality Monitoring Council (MWQMC), 4th National Monitoring Conference, *Building* and Sustaining Successful Monitoring Programs, Chattanooga, TN, May 17-20, Abstract #220 published in Conference Program, p. 265 (Poster Paper).
- Steele, T.D., Huyck, H.L.O., and Fliniau, Holly, 1996, A Preliminary Assessment of Areal Trace-Metals Concentrations in the Upper Clear Creek Watershed, Colorado: American Water Resources Association (AWRA), Colorado Section, Symposium on *Watershed Planning and Management*, Denver, CO, March 15, 1p. abstract published in Symposium Program, with viewgraphs (handout).
- Steele, T.D., Fliniau, Holly, and Huyck, H.L.O., 1998, A Revisited Trace-Metals/Major-Cations Assessment, Upper Clear Creek Watershed, Colorado: American Water Resources Association (AWRA), Colorado Section, Symposium on *Mining in Colorado – Water Issues and Opportunities*, Golden, CO, March 13, 1-p. abstract published in Symposium Program.
- Steele, T.D., 2000, Estimation of Solute Loadings A Hydrologist's Draam or Nighmare?: American Water Resources Association (AWRA), Colorado Section, Symposium on Integrated Watershed Approaches – TMDLs or Tylenol PM – Which is the more Bitter Pill to Swallow?, Golden, CO, March 17, Presentation Handout (15 p.), Presentation Overview published in Symposium Program.
- Stewart, K.C. and Severson, R.C., 1994, Guidebook on the Geology, History, and Surface-Water Contamination and Remediation in the Area from Denver to Idaho Springs, Colorado: U.S. Geological Survey Circular 1097, Washington, DC, 55 p.
- Szewczyk, Marta and Emerick, J.C., 2002, Catalog of Stream Habitat Quality for Clear Creek and Tributaries: Colorado School of Mines (CSM), Division of

Environmental Science and Engineering, Prepared for U.S. Environmental Protection Agency (USEPA), October 30, 223 p. *[LRCWE CCC 254] (Task 2)*

- TDS Consulting Inc., 2000, Trace-Metals Loadings Assessment, Upper Clear Creek Watershed – 1994-2000 Data: Prepared for Upper Clear Creek Watershed Advisory Group, December 28, Executive Summary (9 p.), 2 figures, and 6 tables, Appendices A through F. [TDS Copy]
- TDS Consulting Inc., 2002a, Upper Clear Creek Watershed Trace-Metals Data Assessment – Clear Creek/Central City Superfund Investigative Area: Final Report, Prepared for Colorado Department of Public Health and Environment (CDPHE), Hazardous Materials and Waste Management Division (HMWMD), Contract under Purchase Requisition RX FEA HAZ1000046, January 31, 18 p., 50 figures, 6 tables, and Appendices A through C. [LRCWE Library; TDS Copy]
- TDS Consulting Inc., 2002b, Upper Clear Creek Watershed Trace-Metals Data Assessment – 2001 Addendum: Prepared for CDPHE-HMWMD, Contract under Purchase Requisition RX FEA HAZ02000082, July 12, Executive Summary (4p., with 7 figures and 1 table), 24 figures, 12 tables, and 1 plate. *[TDS Copy]*
- TDS Consulting Inc. (TDS), 2002c, Compiled Basic TMs Data, WWTP Facilities, Upper Clear Creek Watershed: Technical Memorandum to Ron Abel, CDPHE-HMWMD, Vicki Coppage, UCCWA, and Eric Oppelt, CDPHE-WQCD, October 17, 1 p. and 1 table. *[TDS Files]*
- TDS Consulting Inc., 2003a, Upper Clear Creek Watershed Trace-Metals Data Assessment – 2002 Addendum: Prepared for CDPHE-HMWMD, Contract under Purchase Requisition RX FEA HAZ02000082, June 5, Executive Summary (4-p., with 7 figures and 1 table), 24 figures, 12 tables, and 1 plate. *[TDS Copy]*
- TDS Consulting Inc. (TDS), 2003b, Preliminary Information, CDPHE-WQCD South Platte River Basin Informational Hearing Process, Water-Quality Standards Assessment for the Upper Clear Creek Watershed: Technical Memorandum, Prepared for the Upper Clear Creek Watershed Association, 3 November (draft for review), 2 p., 3 figures, and 2 tables. *[TDS Project No. 9622-8; TDS Files]*
- TDS Consulting Inc., 2004a, Upper Clear Creek Watershed Trace-Metals Data Assessment – 2003 Addendum: Prepared for Clear Creek Watershed Foundation (CCWF), on Behalf of Clear Creek County, U.S. Forest Service, and U.S. Environmental Protection Agency, September 7, Executive Summary (4-p., with 2 figures and 1 table), 24 figures, 12 tables, and 1 plate. *[LRCWE Library; CCWF Files; TDS Copy]*
- TDS Consulting Inc. (TDS), 2004b, Upper Clear Creek Watershed Trace-Metals Data Assessment – 2004 Addendum: Clear Creek/Central City Superfund Investigative Area, Prepared for Clear Creek Watershed Foundation, Idaho Springs, CO 80452,

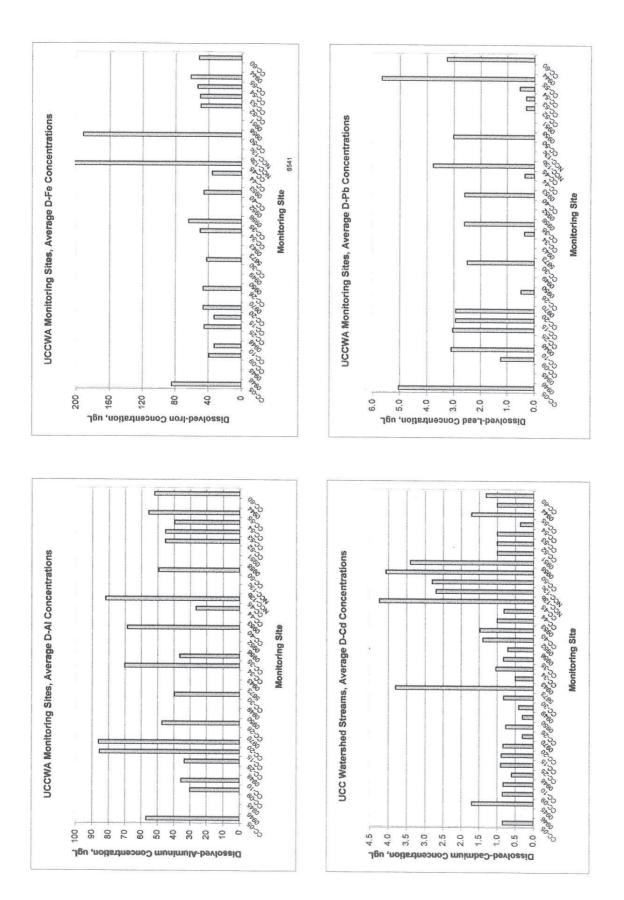
on Behalf of Clear Creek County, U.S. Forest Service, and USEPA, November 22, 4-p. Executive Summary with 5 figures and 1 table; 24 figures and 12 tables. *TDS Project No. 0411-2; TDS Files]*

- TDS Consulting Inc. (TDS), 2005, Gilson Gulch Water-Quality Characterization Study of Mining-Related Sources (Phase 1): Final Report, Prepared for the Clear Creek Watershed Foundation (CCWF), Ed Rapp, President, Prepared in Collaboration with CSM (T. R. Wildeman) and Assisted by CDMG (James Herron), September 16, 9 p. [Appendix A, modified earlier proposal by Herron (2004); Appendix B, SAP; Appendix C, Data; Appendix D, photos; Appendix E, Orphan-Site Action Plan (Preliminary Information, Gilson Gulch Phase-2 319-Grant Application] (TDS Project No. 0416-2)
- TDS Consulting Inc., 2006, Upper Clear Creek Watershed Trace-Metals Data Assessment – 2005 Addendum: Prepared for Clear Creek Watershed Foundation (CCWF), on Behalf of Clear Creek County, U.S. Forest Service, and U.S. Environmental Protection Agency, January 31, Executive Summary (4-p., with 7 figures and 1 table), 24 figures, 12 tables, and 1 plate. *[LRCWE Library; CCWF Files; TDS Copy]*
- Tetra Tech, Inc., 1994, TMDL SWAT Team Review, Nutrient Loading and Eutrophication, Standley Lake, Colorado: Prepared for Denver Regional Council of Governments (DRCOG), Denver, CO, under Contract to U.S. Environmental Protection Agency (USEPA), Office of Wetlands, Oceans, and Watershed, Washington, DC 20460, January 28, 38 p. and attachments (Appendices I and II).
- Tetra Tech RMC (Tt-RMC), 2004a, Final Remedial Investigation Report, Clear Creek/Central City Superfund Site, Operable Unit 4: Prepared in Cooperation with the CDPHE-HMWMD and USEPA, September, Executive Summary, 8 sections (124 p.), tables, figures, and Appendix A (May 2002 Synoptic Surface Water Sampling Event). [*RL Loan; to be provided to LRCWE*]
- Tetra Tech RMC (Tt-RMC), 2004b, Final Feasibility Study Report, Clear Creek/Central City Superfund Site, Operable Unit 4: Prepared in Cooperation with the CDPHE-HMWMD and USEPA, September, 7 sections and Appendices A through F. [RL Loan; to be provided to LRCWE]
- Upper Clear Creek Watershed Advisory Group (UCC-WAG), 2001, UCCWAG Technical Final Report: Compiled and edited by H.L.O. Huyck, T.D. Steele, and R.L. Jones, June 25, 79 p. and Appendices A through D. *[TDS Files; LRCWE CCC 247]*
- Upper Clear Creek Watershed Association (UCCWA), 2002, Review Comments, Draft TMDL Assessment, Clear Creek Segment 2: Memorandum from Ms. Fabyan Watrous, UCCWA Chair to Mr. Phil Hegeman, CDPHE-WQCD TMDL

Coordinator, May 31, cover letter (1-p.) and attached comments (8 p.). [TDS Files]

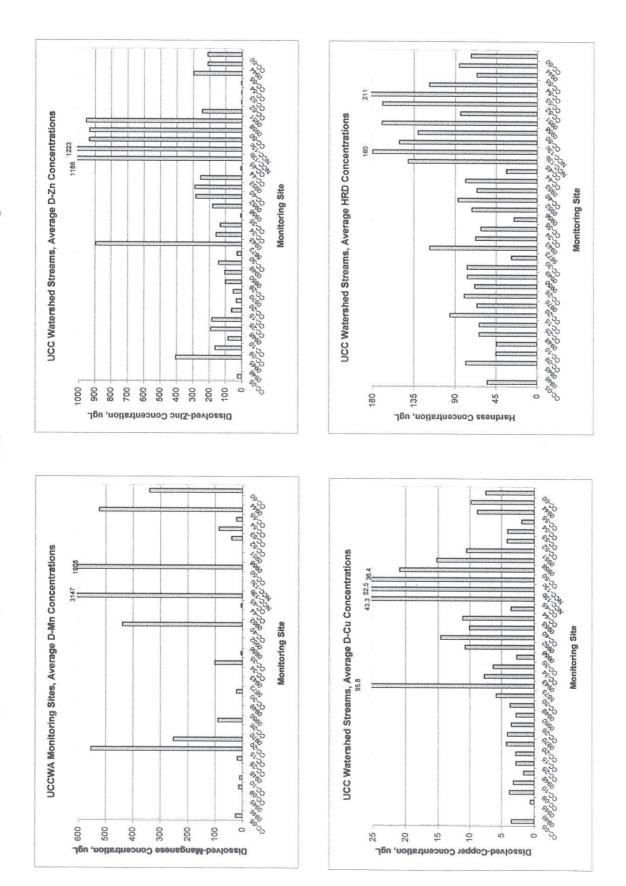
- Upper Clear Creek Watershed Association (UCCWA), 2004a, Plan to Resolve Uncertainty Regarding Clear Creek Segments 2, 9, 11, and 13b: July 2 (revised draft), 8 p. [TDS Files]
- Upper Clear Creek Watershed Association (UCCWA), 2004b, Upper Clear Creek Watershed Plan: Section 319 (NPS) Grant Application to the CDPHE-WQCD, July 27 (final) 9 p. and three attachments. *[TDS Files]*
- U.S. Army Corps of Engineers (USACOE), 2002a, Site Work Plan for the Restoration of Abandoned Mines: July. *[Referenced in USACOE, 2003]*
- U.S. Army Corps of Engineers (USACOE), 2002b, Site Work Plan for the North Fork of Clear Creek, Colorado: August. *[Referenced in USACOE, 2003]*
- U.S. Army Corps of Engineers (USACOE), 2003, Chemical Data Quality Assessment Report (CDQAR) for Soil Sampled Obtained at North Fork of Clear Creek, Colorado: Omaha District, April, 6 sections and Appendix (2 tables). [JH-CDMG]
- U.S. Bureau of Reclamation (BoR), 1990, Clear Creek/Central City Superfund Site Operable Unit II, Stage II – Analysis and Proposed Remedial Action for Big Five Tunnel Area: U.S. Department of Interior, March 26. [*Referenced, CDM (1991)*]
- U.S. Environmental Protection Agency (USEPA), 1987, Record of Decision, Clear Creek/Central City Superfund Site, Operable Unit #2, Tailings and Waste Rock Remediation: March 31. [Referenced, CDM (1991)]
- U.S. Environmental Protection Agency (USEPA), 1994, Clear Creek-Central City, Colorado, EPA ID# COD980717557: in National Superfund Priorities List Sites – Colorado: Region VIII, March, 4 p. *[TDS Files; to be provided to LRCWE]*
- U.S. Environmental Protection Agency (USEPA), 1995, Historic Hardrock Mining, The West's Toxic Legacy The Critical Link between Water Quality and Abandoned Mine Sites: Report EPA 908-F-95-002, Region 8 (8WM-WQ), May, 8 p.
- U.S. Environmental Protection Agency (USEPA), 1999, Waldorf Mine Site Analytical Data Package: Clear Creek/Central City Superfund Site, Reference 8#PR-SR, May 25. [10/8/98 sampling-survey basic-data results; need information on sampling sites] [TDS Files]
- U.S. Environmental Protection Agency (USEPA), 1994, Site Visit and Sampling Report for McClelland and Aorta Tunnels, Clear Creek Watershed: June 29, 10 p. and attached materials. *[LRCWE CCC 230]*

- U.S. Environmental Protection Agency (USEPA), 1996, Statewide Watershed Management – Executive Short Course: Watershed Academy, Office of Water, Washington, DC, September (latest revision), 3 sections + supplemental State of Wyoming DEW Water Quality Division materials (Tetra Tech Inc. presentations, February 26-27, 1998, Cheyenne, WY). [TDS Library]
- U.S. Environmental Protection Agency (USEPA), 1999, Quality Assurance Plan for Upper Clear Creek Watershed Association (Metals Only), Clear Creek Watershed: Prepared by Dana B. Allen; Approved by Holly Flineau, January 28, 13 p. [Source, USEPA; TDS Copy]
- U.S. Environmental Protection Agency (USEPA), 2003, Request for Removal (Response) Action at the Central City/Clear Creek National Priorities List Site in Clear Creek County and Gilpin County at Selected Mine Waste Piles Principally in the Russell Gulch and Virginia Canyon Drainages: EPR-SR Action Memorandum, Region 8, March 4, 8 p. [CCWF Files]
- U.S. Environmental Protection Agency (USEPA), 2005a, Sustained Commitment Needed to Further Advance Watershed Approach: Internet Website, <u>http://www.epa.gov/oig/reports/2005/</u>20050921-2005-P-00025.pdf
- U.S. Environmental Protection Agency (USEPA), 2005b, Handbook for Developing Watershed Plans to Restore and Protect Our Waters: EPA 841-B-05-005, Nonpoint Source Control Branch, Washington, DC 20460, October, 13 sections, 2 appendices, glossary, and bibliography. [CCWF Library]
- U.S. Environmental Protection Agency (USEPA) and Colorado Department of Health (CDH), 1991, Record of Decision, Clear Creek/Central City Superfund Site, Operable Unit #3, Gilpin and Clear Creek Counties, Colorado: September 30. [LRCWE CCC 95]
- U.S. Environmental Protection Agency (USEPA) and Colorado Department of Public Health & Environment (CDPHE), 1997a, State of the Watershed Report Clear Creek, 1997: 39 p., 9 tables, and 15 maps. *[LRCWE Library; TDS Copy]*
- U.S. Environmental Protection Agency (USEPA) and Colorado Department of Public Health & Environment (CDPHE), 1997b, Argo Tunnel Treatment Plant, Superfund-Compliance Document: Part 1 – Application of ARARS (37 p. and Appendix A (12 tables)); Part 2 – Discharge Control Mechanism (24 p. draft, November 24. [TDS Files; loaned to CC-CCWF; to LRCWE Library]
- U.S. Environmental Protection Agency (USEPA) and Colorado Department of Public Health & Environment (CDPHE), 2004, Record of Decision, Clear Creek/Central City Superfund Site, Operable Unit #4, Gilpin and Clear Creek Counties, Colorado: September 30. [TDS Files, computer; 2/5/05 update, RA-HMWMD]


UCC Watershed Plan – References

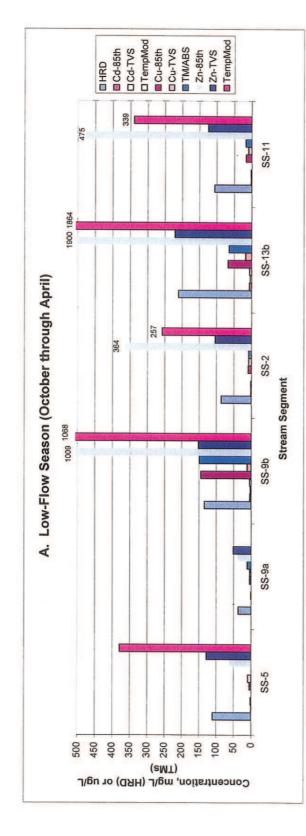
- U.S. Forest Service (USFS), 2002, Expanded Preliminary Assessment Report Dibben's Smelter Site: Clear Creek Ranger District, Arapaho/Roosevelt National Forest, 16 p. and Appendices A through G, October. [CCWF Library]
- Water Quality Control Commission (WQCC), 2004, Updated Draft Final Action Documents, July 2004 South Platte Water Quality Standards Rulemaking: Memo from Paul Frohardt, CDPHE, August 16, 15 p. and attachments.
- Wentz, D.A., 1974, Effects of Mine Drainage on the Quality of Streams in Colorado: Colorado Water Resources Circular No. 21, Prepared by the U.S. Geological Survey in Cooperation with the Colorado Water Pollution Control Council, 117 p.
- Wildeman, T.R., Ranville, J.F., Herron, J., and Robinson, R.H., 2003a, Development of a Simple Scheme to Determine the Chemical Toxicity of Mine Wastes: Paper presented at the 2003 National Meeting of the American Society for Mining Reclamation (ASMR), Billings, MT, June 2-6, 17 p. [Published by ASMR, Lexington, KY 4502] [TDS Copy from TRW-CSM]
- Wildeman, T.R., Heflin, Nancy, Bazin, Abigail, and Bednar, Anthony, 2003b, Characterization and Contamination Assessment of Mine Waste Piles and Sediment Materials in Gilpin County, Colorado, including Site Descriptions, Leachate Characterization Charts, Physical, Chemical, and Overall Toxicity Rating Charts: Final Report, Colorado School of Mines, Department of Chemistry and Geochemistry, Submitted to Ron Abel, CDPHE-HMWMD, April 10, 18 p. and Appendices A through D. [CCWF Library]
- Wildeman, T.R., Steele, T.D., and Herron, James, 2007, Phyiscal Assessment of Mine Wastes and their Comparison with Chemical Assessments: Society of Mining Engineering (SME), Denver, CO (*abstract accepted; paper in process*).
- Woodling, J.D., Gasaway, M.S., and Dominguez, J.M., 1998, Clear Creek Biological Monitoring Program: Colorado Division of Wildlife (CDOW), December, 26 p., 9 tables, 17 figures, and Appendix 1. [TDS Files]
- Woodling, J.D. and Ketterlin, J.K., 2002, Clear Creek Monitoring Program, October 1995 through March 2001: Colorado Division of Wildlife (CDOW), March, 27 p., 8 tables and 15 figures. *[TDS Files]*
- Wright Water Engineers, Inc., 1994, Letter Engineering Proposal to the Upper Clear Creek Watershed Association (UCCWA), October 20, 3 p. *[LRCWE CCC 230]*
- Wright Water Engineers, Inc., 1995, Phase-I Engineering Report, Aorta Mine/Clear Creek County Landfill Drainage Improvements: February 24 (11 p. and presentation material for UCCWA, 3 figures, and Appendix A); April (10 p. with figures and drawing. *[LRCWE CCC 229 and 230]*

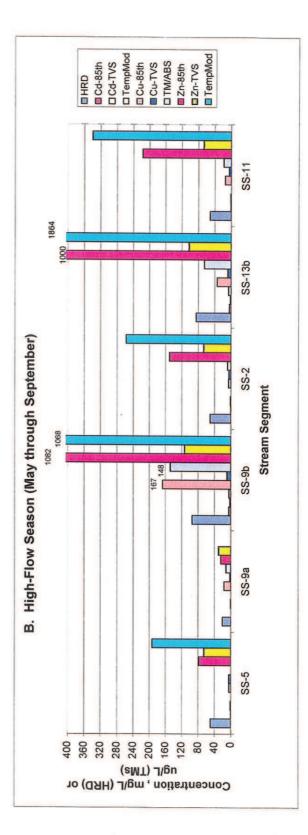
UCC Watershed Plan – References


Yoder, C.O., 1997, Important Concepts and Elements of an Adequate State Watershed Monitoring and Assessment Program: Prepared for the U.S. Environmental Protection Agency (USEPA), Office of Water (Cooperative Agreement CX 825484-01-0) and ASIWPCA Standards and Monitoring Task Force, August 8, 17 p. *[TDS Files]*

File: UCCWatershedPlanTextg(RevFinal).doc

TDS Project Nos. 0405-1

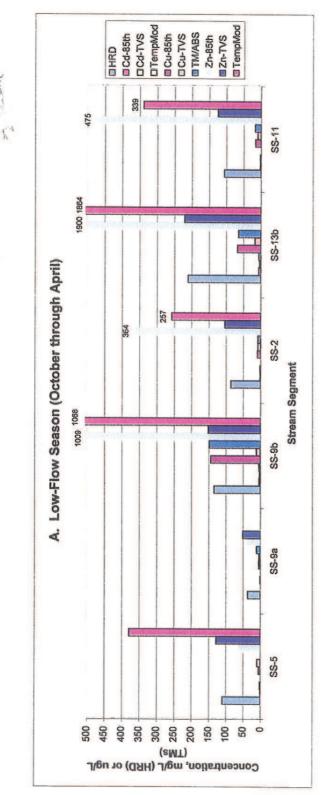

Sheet 1 of 2

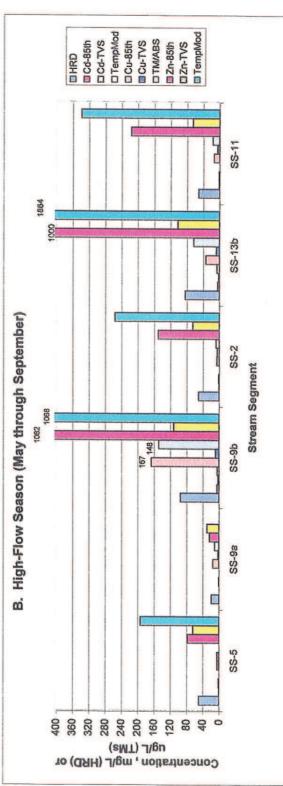


TDS Project Nos. 0405-1

Sheet 2 of 2

UCC Watershed Plan

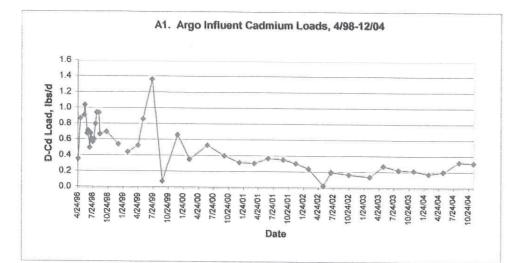


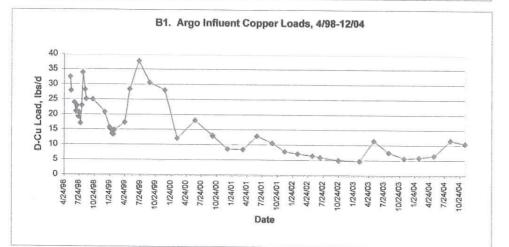

TDS Project No. 0405-1

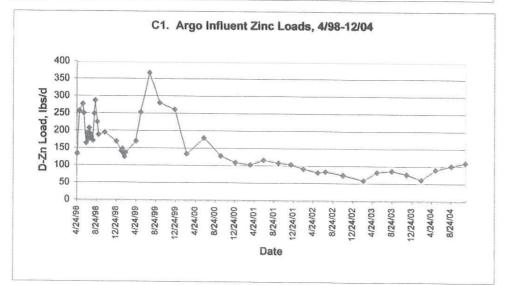
7/22/05

UCC Watershed Plan

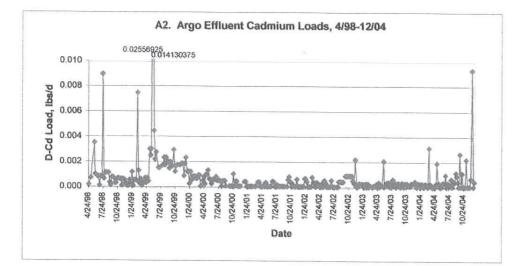
Figure 1-2 -- Comparison of Selected Trace-Metals Statistics by Segment

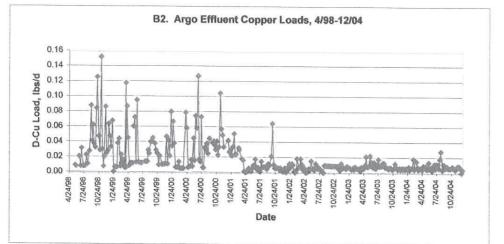


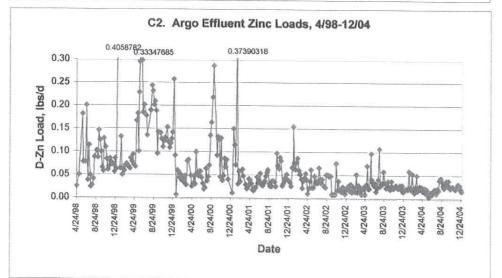



TDS Project No. 0405-1

6/23/05


Argo-Related Trace-Metals (TMs) Loads





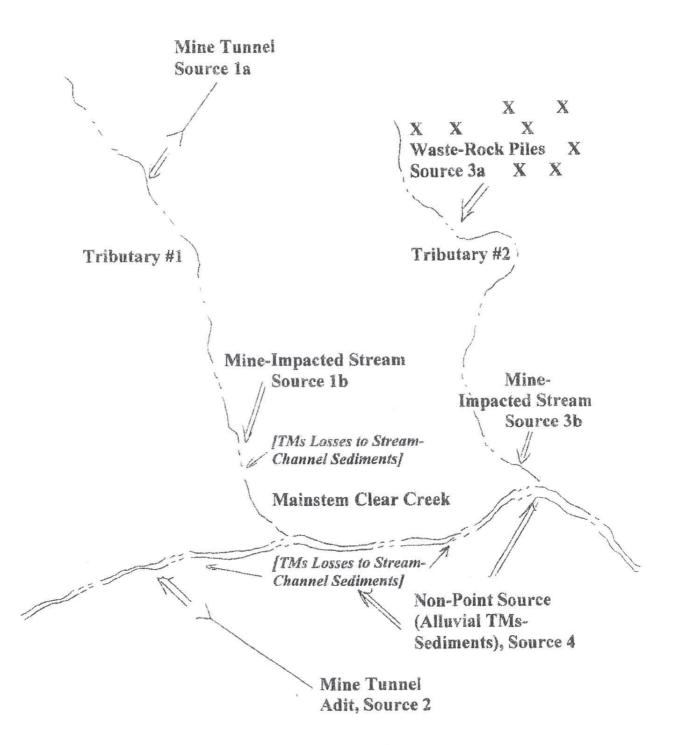
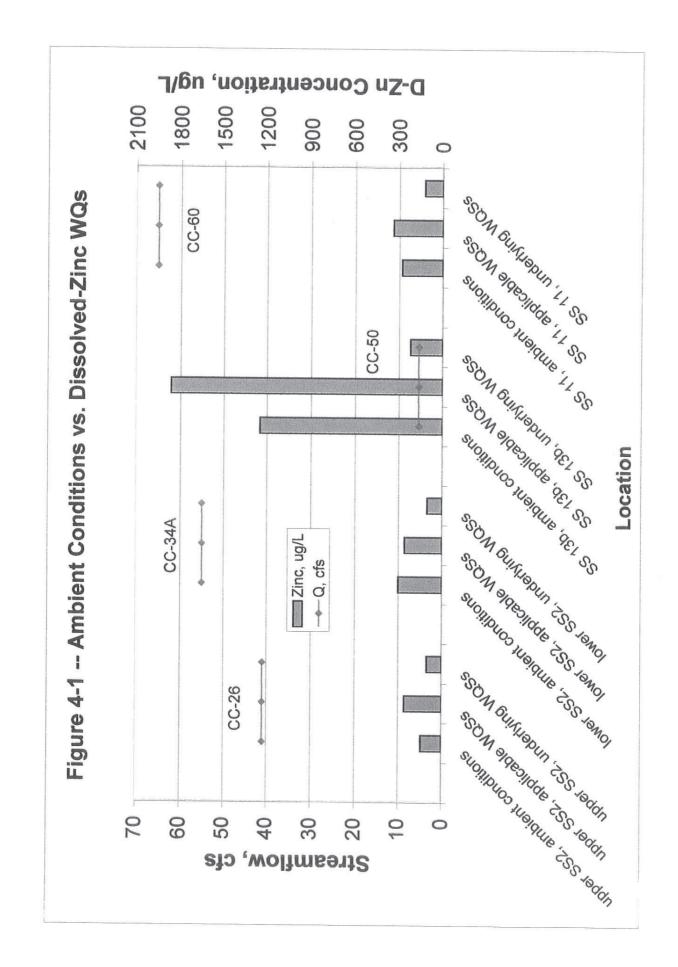
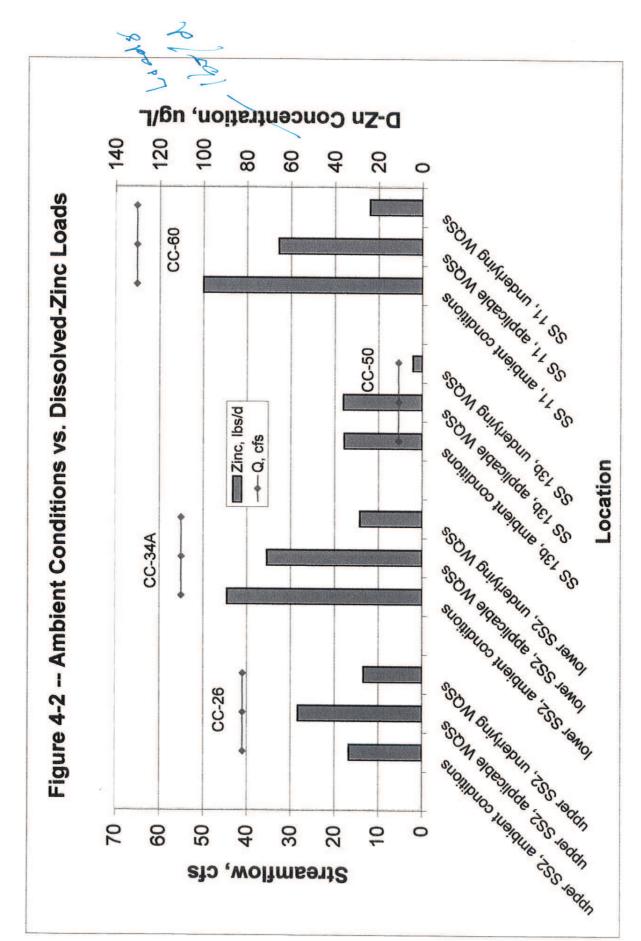




Figure 3-2 – Conceptual Schematic for Estimation of TMs-Loads' Reduction through Remediation

Upper Clear Creek Watershed – Water-Quality Monitoring Sites and WQCD Water-Quality Stream Segments

Segment	Description	Site(s)	Listed TMs
1	Mainstem Clear Creek at Bakerville	CC-05	
	CC at Bakerville (CDOW 0.1)	0946	
2	CC @ Georgetown Loop RR (CDOW 0.5)	0945	D-Cu, D-Zn
	CC bl Georgetown (CDOW 1)	0948	
	Mainstem Clear Creek (ab WFCC)	CC-25	
	Mainstem Clear Creek (bl WFCC)	CC-26	
	CC bl US 40 (CDOW 2)	0950	
	CC bl Spring Gulch (CDOW 3)	0949	
	CC ab Idaho Springs (CDOW 4)	0943	
	Mainstem Clear Creek (ab Chicago Ck)	CC-34	
	CC at Riverside Park (Id.Spgs.CDOW 5)	0956	
3a	South Fork Clear Creek	CC-10	D-Zn
3b	Leavenworth Creek	CC-09	D-Cu, D-Zn
4	Upper West Fork Clear Creek	n/a	
7	Woods Creek	n/a	
6	All tribs except 4 & 7 (upper WF)	n/a	
8	Lions Creek	n/a	
5	West Fork Clear Creek @ Berthoud Falls	CC-15	D-Cu, D-Zn
	West Fork Clear Creek at mouth	CC-20	
	WFCC at confluence (CDOW site)	0970	
9a	Fall River, including all tributaries	CC-30	D-Cu, D-Zn
9b	Trail Creek, incl. all tributaries (CDPHE)	5673	D-Cd/Cu/Pb/Mn/Zn
10	Chicago Creek, including all tributaries	CC-35	

Upper Clear Creek Watershed --- Water-Quality Monitoring Sites and WQCD Water-Quality Stream Segments

Segment	Description	Site(s)	Listed TMs
11	CC at Dump (Id.Spgs.CDOW 6) Mainstem Clear Creek at Kermitts CC at Gravel Pit (bl KermittsCDOW 7) CC at Braided Channel (CDOW 7.5) Mainstem CC below Beaver Brook CC at Tunnel #1 (CDOW 8) Mainstem CC above Church Ditch Divrs	0952 CC-40 0953 0951 CC-55 0944 CC-60	D-Cd/Cu/Zn
12	All tributaries to 11 except 13A/13B	CC-54/-52/-	53
13a	Upper NFCC & tribs. ab WS intake NFCC ab Black Hawk's Pump Station	CC-44 NCC-13a	
13b	North Fork Clear Ck ab BHCCSD WWTP NFCC ab existing BHCCSD WWTP NFCC near new BHCCSD WWTP	CC-45 NCC-13b NCC-13c	
	North Fork Clear Creek at mouth CC at confluence (CDOW site)	CC-50 0958	Aq Life Use
	[UCCWA "watershed management" sto	ops here]	
14a	Mainstem CC, Farmers Highline Canal to Denver Water conduit #16	n/a	Aq Life Use
14b	Mainstem CC, Denver Water conduit to Youngfield Street	n/a	Aq Life Use
15	Mainstern CC, Youngfield to S.Platte	n/a	Aq Life Use fecal coliform
Codes:	UCCWA = Upper Clear Creek Watershed SLCs = Standley Lake Cities (Northglenn, UCCWA/SLCs sites, indicated as "CC-xxt CDOW = Colorado Division of Wildlife BBCCSD = Black Hawk/Central City Sani n/a = no monitoring sites available for this Blue shaded stream segments = those into Green-shaded stream segments = added	, Westminste " (xx is nume tation Distric assessmen cluded in this	er, Thornton) ric code). t (NCC sites) t; not applicable s 319 assessment.

Status: 1/5/04 Updated

TDS Project No. 0405-1

tes	
03	Ē
orin	
nite	
Mc	
hed	
lers	
Wat	
Selk	
5	
lear	
or Cl	
ope	
ຕ ຜູ	
ations	
trat	
COL	
Con	
888	
dne	
Har	
put	
SIS S	
D-TI	
90	
Gra	
FAV	
N O	
mai	
mm	
1	
10 2	
Tabl	
ary	
mmary	24143
Sur	d rea
	2/04
	5 OF 7
	thed
	aloun
	100
	NOTO:
	Z

Site ID		Mo	N	×	Se	Ag	Na Na	Th Th	>	8 Zn	Hrd	0	Site ID		-	HRD @	High-Q
CC-05	Average Concentrations:	4,0	13.1	1.0	14.7	0.9	9.12	21.4	5.0	25.0	54.5	53.0	CC-05	1	£	37.7	97.3
Segment 1	Number of Analyses:	45	84	49	83	81	49	26	8	94	72	88	Segment 1			38	42
CC-09	Average Concentrations:	3.2	4.8	0.6	8°6	0,2	1.85			164	94.9	13.6	CC-09	Ł	U	34.1	23.8
Segment 3b	Number of Analyses:	37	45	37	45	99	37			45	45	940	Segment 3b			22	22
CC-10	Average Concentrations:	<u>ଟ</u>	9.1	1,2	3.4.7	0.8	1.94	21.4	4.0	81.7	94.2	16.7	CC-10			35,6	30.7
Segment 3a	Number of Analyses:	47	86	51	85	83	51	26	69	86	75	88	Segment 3a			38	42
CC-25	Average Concentrations:	3.9	9.1	1.0	14.6	0,8	5.57	21.4	4.0	184	63.2	108	CC-25			51.1	197
Segment 2	Number of Analyses:	47	86	51	85	83	51	26	00	86	75	88	Segment 2			38	42
CC-15	Average Concentrations:	30.0	9.2	7.2	24.7	0.8	34.2	21.4	4,0	60.8	96.0	42.7	CC-15	149.5	9.9	52,3	76
Segment 5	Number of Analyses:	24	85	51	84	82	51	26	Ø	85	73	88	Segment 5			38	42
CC-20	Average Concentrations:	12.0	ណ្ឌូ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14.7	0.8	20.0	22.4	4.0	32.4	66.0	101	CC-20			42.4	184
Segment 5	Number of Analyses:	47	86	51	85	83	51	26	S	86	75	88	Segment 5			38	42
CC-26	Average Concentrations:	4.7	8.2	2.0	7.7	0.2	10.9	0.9		66	68,3	171	CC-26			50.0	312
Segment 2	Number of Analyses:	37	54	42	54	64	42	Ø		54	54	56	Segment 2			26	26
CC-30	Average Concentrations:	හ. හ	69 (7)	1.0	14.3	0.8	2.83	20.3	4.0	27.9	27.9	28.8	CC-30	1		20,1	52
Segment 9a	Number of Analyses:	46	85	50	84	81	50	25	7	85	74	88	Segment 9a			37	42
CC-34	Average Concentrations:	0,0 0,0	2.6	1.8	8.9	0.2	9.8			132	61.2		CC-34		- 22	ralues - S	To
Segment 2	Number of Analyses:	13	13	13	13	54	13	STUDIES CONTRACTOR OF STUDIES		13	13		Segment 2				
CC-35	Average Concentrations:	ତ.ତ	6°	1,0	14,4	0,8	3.00	20.3	4.0	7.2	25:2	23.2	CC-35		0.5	22.6	41
Segment 10	Number of Analyses:	44	83	48	82	80	48	25	7	83	72	88	Segment 10		42	37	42
CC-40	Average Concentrations:	4.5	10.0	2.0	14.2	0.7	13.3	20.3	4.0	289	66.1	269	CC-40	91.3	61.8	44.7	487
Segment 11	Number of Analyses:	46	85	50	84	82	50	25	2	85	73	88	Segment 11	- 14	42	37	42
CC-44	Average Concentrations:	e Li	න හ	1.1	8.7	0	5.21			ເດັ ເບັ	9. 10 10	16.2	CC-44	2	6.0	29.4	24.8
Segment 13a	Number of Analyses:	30	35	30	35	36	30			35	34	43	Segment 13a		18	31	31
CC-45	Average Concentrations:	с. С.	25.6	2.2	16.5	6. 0	20.6	23.6	4.0	1188	141	22.5	CC-45		5.8	70.7	37.8
Segment 13b	Number of Analyses:	47	85	51	85	83	51	26	00	86	75	88	Segment 13b		42	38	42
CC-50	Average Concentrations:	4.2	20.2	ស	16.3	0.8	2.8.7	21.6	4.0	934	131	24.0	CC-50		5.0	78.7	44.8
Segment 13b	Number of Analyses:	47	86	51	85	83	51	26	80	86	75	88	Segment 13b		42	38	42
CC-52	Average Concentrations:	0	2.7	2,4	10.1	0,2	16.6			4.0	170		CC-52	-	ent data v	raluês - S	1-
Segment 12	Number of Analyses:	22	22	22	22	22	22			22	22		Segment 12				
CC-53	Average Concentrations:	0.0	69 23	2.4	10.0	0.2	16.2			61 61	211		CC-53	-	nsufficient data values -	ralues - S	ST
Segment 12	Number of Analyses:	21	21	21	21	21	21			21	21		Segment 12				
CC-54	Average Concentrations:	67 67	69 69	8°	6.0	0.1	12.9			0°0	13.8		CC-54		nsufficient data v	values - S	ST
Segment 12	Number of Analyses:	2	14	2	14	14	7			14	14		Segment 12				
CC-55	Average Concentrations:	8,2	14.3	2,5	21.5	1,6	11.4	21.6	4.0	297	66.2		CC-55			40.0	
Segment 11	Number of Analyses:	10	41	14	40	38	14	26	80	41	30		Segment 11	14		16	
CC-60	Average Concentrations:	4.4	8.6	2.2	14.6	0.8	14.3	21.6	4.0	211	72.6	264	CC-60	102	62.8	47.4	475
Segment 11	Mumber of Anshene.	47	SS	r U	UQ U	c	T U	00	4								

C
0
0
hed
ers
Wat
10
č
0
9
-

Table 1-2

and the second se	and have a second been a second by the second s	M	20	AS	Ba	Be	9	S	Ⴆ	0	Notes	CC	Fe	Pb	-	Mn
CC-05	Average Concentrations:	56.9	40.1	14.7	39.3	1.4	0,8	14.84	3.1	2.0		3.5	84.2	5.0	12	24.5
Segment 1	Number of Anelyses:	84	10	83	64	6	84	78	50	44		84	84	84		84
CC-09	Average Concentrations:	30,2		្	37.3		0.9	12.12	1.6	L.L		3.8	38.8	2.2		12.9
Segment 3b	b Number of Analyses:	45		45	37		45	45	37	37		45	45	45		45
CC-10	Average Concentrations:	35.7	40.1	24.5	32.3	1.4	0,8	11.87	0.0	0, H		3.2	32.5	5		0.7
Segment 3a	a Number of Analyses:	86	10	85	45	0	86	81	52	46		86	86	85		86
CC-25	Average Concentrations:	33,6	40.1	14.4	43,5	1.4	0.9	15.79	2.9	1.9		2.8	44.7	3.0		18.2
Segment 2	Number of Analyses:	86	10	85	45	6	86	81	52	46		86	86	86		86
CC-15	Average Concentrations:	85,4	40.1	13.7	10.8	1.4	0.9	33.00	2.9	1.9		2.8	32.5	2,9	2.94	m in in
Segment 5	Number of Analyses:	85	10	84	45	0	85	80	52	46		85	85	85		85
CC-20	Average Concentrations:	85,9	40.1	34.6	19.5	1.4	0.8	21.13	5.9	14 N		4	46.1	3	22	252
Segment 5	Number of Analyses:	86	10	84	45	6	86	81	52	46		86	86	86		86
CC-26	Average Concentrations:	47.2	0.6	4.0	35,5		0.8	19.72	2.6	1.1		3°2	46.1	0.5		89,9
Segment 2	Number of Analyses:	54	1	54	37		54	54	42	37		54	54	54		54
CC-30	Average Concentrations:	39.7	40.1	14.1	13.7	н. Ч	0.8	7.31	60.0	1.9		5.9	41.9	2.5		21.2
Segment 9a	a Number of Analyses:	85	6	84	44	Ø	85	80	51	45		85	85	85		85
CC-34	Average Concentrations:	70.2		5.0	31.1		1.0	17.26	1.1	1.0		6.3	50.0	0.4		101
Segment 2	Number of Analyses:	13		13	13		13	13	13	51		13	13	13		13
CC-35	Avarage Concentrations:	36,4	40.1	14.2	23.4	1.5	0.8	7.25	0.0	1.9		2.7	64.0	2.6		ດາ ເຕ
Segment 10	Number of Analyses:	83	6	82	42	8	83	78	49	64		83	83	83		83
CC-40	Average Concentrations:	68.5	40.1	13.9	30.9	1,5	1,r	18.45	2.9	2.0		10.1	45.3	2.6		438
Segment 11	Number of Analyses:	85	6	84	44	8	85	80	51	45		85	85	85		85
CC-44	Average Concentrations:	26,4		4.6	30.7		0 89	9,04	1.7	1.1		ы N	35.2	6°0		n N
Segment 13a	a Number of Analyses:	35		35	30		35	35	30	30		35	35	35		35
CC-45	Average Concentrations:	81.8	40.1	14.6	30.0	2.4	4,2	38.56	ev M	15.7		43.3	6541	89° 100°		3147
Segment 13b	b Number of Analyses:	86	10	85	45	9	86	81	52	46		85	86	86		86
CC-50	Average Concentrations:	49.3	40.1	14.4	26.2	\$°?	4,1	35.69	e N N	Z.L		20.9	192	0.0		1908
Segment 13b	b Number of Analyses:	86	10	85	45	9	86	81	52	46		85	86	86		86
CC-52	Average Concentrations:	45.3		4.0	L'LL		9°0	50.98	2.2	1.0		4 12	\$0°.3	0,0		39,3
Segment 12	2 Number of Analyses:	22		22	22		22	22	22	22		22	22	22		22
CC-53	Average Concentrations:	40.0		n n	68.1		0°7	63.80	5.0	1.0		4.1	50.1	0.3	~	ເລ ເຊິ່ງ
Segment 12	2 Number of Analyses:	21		21	21		21	21	21	21		21	21	21		21
CC-54	Average Concentrations:	39.7		с. С.	80°.0		0.4	មា ហេ ហេ				2.9	53.1	0.5		21.7
Segment 12	2. Number of Analyses:	14		14	2		14	14				14	14	14		74
CC-55	Average Concentrations:	55.57	40.1	25.2	24.6	1.4	1.7	18.82	6.3	5,4		8.8	61.6	5.7		523
Segment 11	Number of Analyses:	41	10	40	8	6	41	36	15	9		41	41	41		41
CC-60	Average Concentrations:	51.9	40.1	14,4	31.0	1.4	1.3	20.37	2.9	2.0		7.5	51.5	3.3		340
Comment 1		00	10	40	10	C	00	10	4 2							

Summary of Average POR Selected D-TMs and Hardness Concentrations, Upper Clear Creek Watershed Monitoring Sites

SS-2 Low-Q; 7-mo HRD High Q, 5-mo HRD Sorted by stream segment Sorted by stream segment Statistics: Hrd Date Cd Cu Zn Hrd Date Cd Cu 7n Mean 85.8 # samples 0.73 4.5 237 50.1 # sample: 0.33 3.1 106 # Values 440 479 462 459 459 371 414 390 390 389 85th %iles 1.15 WFCO D-Zn 9.6 364 WFCC D-Zn 0.56 5.7 150 TVSs SiteSpStd 191 2.0 7.9 104 SiteSpStd 122 1.3 5.0 65.8 TempMod 257 8.1 8.1 257 Low-Q; 7-mo HRD SS-3a Sorted by stream segment High Q, 5-mo HRD Sorted by stream segment Statistics: Date Zn Hrd Cd Cu Hrd Date Cd Cu Zn Mean 53.7 # samples 0.3 1.4 73.7 35.9 0.1 1.7 89.3 # samples # Values 35 44 42 42 42 40 44 44 44 44 85th %iles WFCC D-Zn 0.5 4.0 90.1 WFCC D-Zn 0.3 4.1 116 TVSs SiteSpStd 129 1.4 5.3 69.8 SiteSpStd 91.9 1.0 3.7 49.4 TempMod 100 100 SS-3b Low-Q; 7-mo HRD Sorted by stream segment High Q, 5-mo HRD Sorted by stream segment Statistics: Hrd Date Cd Cu Zn Hrd Date Cd Zn Cu Mean 57.2 0.2 0.5 # samples 198 34.2 0.1 2.2 134 # samples # Values 21 22 21 21 21 24 24 24 24 24 85th %iles D-Zn WFCC 0.5 1.3 225 D-Zn WFC 0.4 5.1 179 TVSs SiteSpStd 136 1.5 5.6 73.5 SiteSpStd 88.3 1.0 3.6 47.4 TempMod 220 220 SS-5 Low-Q; 7-mo HRD Sorted by stream segment High Q, 5-mo HRD Sorted by stream segment Statistics: Hrd Date Cd Zn Cu Hrd Date Cd Zn Cu Mean 110 # samples 0.14 2.7 46.4 49.6 0.18 2.5 # samples 49.5 # Values 126 165 156 156 155 121 147 143 143 141 85th %iles 0.24 5.2 61.4 0.31 4.6 78.0 TVSs 2.4 9.7 128 1.3 4.9 65.2 Mod TVS: Site-Specific Zn equation (replace standard TVS 236 ite-Specific Zn equation (replace standard TVS) 121 SS-9a Low-Q; 7-mo HRD Sorted by stream segment High Q, 5-mo HRD Sorted by stream segment Statistics: Hrd Date Cd Cu Zn Hrd Date Cd Cu Zn Mean 36.8 0.02 1.9 # samples 28.5 19.9 # samples 0.09 6.8 26.6 # Values 36 42 43 43 43 44 39 43 43 43 85th %iles WFC D-Zn 0.00 4.4 38.7 WFCC D-Zn 0.00 15.8 24.0 TVSs SiteSpStd 94.1 1.1 3.8 50.7 SiteSpStd 56.1 0.7 30.1 2.3 TempMod 11 11 SS-9b Low-Q; 7-mo HRD Sorted by stream segment High Q, 5-mo HRD Sorted by stream segment Statistics: Hrd Date Cu Cd Zn Hrd Date Cd Cu Zn Mean 134 3.7 # samples 95.9 966 94.8 # samples 3.8 95.6 794 # Values 7 7 7 7 7 5 5 5 5 5 85th %iles WFCC D-Zn 4.2 144 1009 WFCO D-Zn 5.1 167 1082 TVSs SiteSpStd 279 2.8 11.5 152 SiteSpStd 208 22 8.6 113 TempMod 4.6 148 1068 4.6 148 1068 SS-11 Low-Q; 7-mo HRD Sorted by stream segment High Q, 5-mo HRD Sorted by stream segment Statistics: Hrd Date Cd Cu Zn Hrd Date Cd Cu Zn Mean 106 # samples 1.3 11.2 331 50.8 # samples 0.7 9.1 149 # Values 239 308 301 301 300 239 267 254 254 254 85th %iles WFC D-Zn 1.9 15.9 475 WFCC D-Zn 1.0 13.8 217 TVSs SiteSpStd AmbBased 229 2.3 9.4 124 SiteSpStd 123 1.4 5.0 66.5 TempMod 339 AmbBased 17 339 SS-13b Low-Q; 7-mo HRD Sorted by stream segment High Q, 5-mo HRD Sorted by stream segment Statistics: Hrd Date Cd Cu Zn Hrd Date Cd Cu Zn Mean 210 4.3 # samples 38.6 1386 84.6 # samples 2.4 20.4 593 # Values 136 199 196 194 196 126 168 165 165 165 85th %iles WECO D-Zn 6.1 67.2 1900 WFCO D-Zn 4.0 33.7 1000 **TVSs** SiteSpStd 405 3.9 16.9 221 SiteSpStd 189 2.0 7.8 103 AmbBased #Zn=740 TempMod 6.0 1864 64 6.0 64 1864

Comparison of Seasonal Stream Standards and 85th-Percentile Trace-Metals Concentrations, by Stream Segment

Comparison of WQCD Stream Standards and 85th-Percentile Trace Metals Concentrations, by Stream Segment

SS-2	Low-Q;	7-mo HRD	Sorted by strea	m segment		High Q, 5	-mo HRD	Sorted by st	ream segmen	t	
Statistics:	Hrd	Date	Cd	Cu I	Zn	Hrd	Date	Cd	Cu	TT	Zn
Mean	85.8	# samples	and the second s	4.5	237	50.1	# samples	The state of the second	3.1	Ц Ц	106
# Values	440	479	462	459	459	371	414	390	390		389
85th %iles	Part Starting and Start Start Party	and and the second second second	1.15	9.6	364			0.56	5.7		150
TVSs			2.0	7.9	103			1.3	5.0		65.6
TempMod				8.1	257			410	8.1		257
SS-3a		7-mo HRD	Sorted by strea	And the local data in the loca		High Q, 5	mo HRD	Sorted by st	ream segmen	1	
Statistics:	Hrd	Date	Cd	Cu I	Zn	Hrd	Date	Cd	Cu		Zn
Mean	53.7	# samples		1.4	73.7	35.9	and statement of the second		The second se		the second s
# Values	35	44	42	42	42	40	# samples		1.7		89.3
85th %iles	The second se		0.5	4.0	90	40	44	44		-	44
TVSs			1.4					0.3	4.1		116
TempMod			1.4	5.3	70 100			1.0	3.7		49
SS-3b	Low Or	7-mo HRD	Coded by steep		100	LUL O C	1100				100
21-12-4-32-1-11			Sorted by strea		-	High Q, 5			ream segmen	t	
Statistics:	Hrd	Date	Cd	Cu	Zn	Hrd	Date	Cd	Cu		Zn
Mean	57.2	# samples		0.5	198	34.2	# samples		2.2		134
# Values	21	22	21	21	21	24	24	24	24		24
85th %iles			0.5	1.3	225			0.4	5.1		179
TVSs			1.5	5.6	73			1.0	3.6		47
TempMod				From & Hillington & Hillington	220	1					220
SS-5		7-mo HRD	Sorted by strea	m segment		High Q, 5	-mo HRD	Sorted by st	ream segmen	t	
Statistics:	Hrd	Date	Cd	Cu	Zn	Hrd	Date	Cd	Cu		Zn
Mean	110	# samples	0.14	2.7	46.4	49.6	# samples	0.18	2.5	and the second s	49.5
# Values	126	165	156	156	155	121	147	143	143		141
85th %iles	and the second second	and the state of the second second	0.24	5.2	61.4	The second second	destation with the second	0.31	4.6	totte and	78.0
TVSs			2.4	9.7	128			1.3	4.9		65.0
Site-Specif	fic Zn equ	ation (replace	e standard TVS)		379						193
SS-9a	Low-Q; 7	7-mo HRD	Sorted by strea	m segment		High Q, 5	-mo HRD	Sorted by st	ream segmen	t	
Statistics:	Hrd	Date	Cd I	Cu	Zn	Hrd	Date	Cd	Cu	I I	Zn
Mean	36.8	# samples	0.02	1.9	28.5	19.9	# samples		6.8		26.6
# Values	36	42	43	43	43	39	44	43	43		43
85th %iles			0.00	4.4	38.7	Contraction of the loss		0.00	15.8		24.0
TVSs			1.1	3.8	50.5			0.7	2.3		30.0
TempMod				11				0.7	11		30.0
SS-9b	Low-Q: 7	-mo HRD	Sorted by strea	m segment	Contractive of the second	High Q, 5	mo HRD	Sorted by et	ream segmen	•	Hard Courts Internation
Statistics:	Hrd	Date	Cd I	Cul	Zn	Hrd	Date	Cd	Cu		Zn
Mean	134	# samples	3.7	95.9	966	94.8	# samples	Charges of the Real Property lies, on the Real Property lies of the Re	95.6		and the second second second
# Values	7	7	7	7	7	5	# samples	5	5		794 5
85th %iles			4.2	144	1009						The local division of
TVSs			2.8	11.5	151			5.1	167		1082
								2.2	8.6 148		113
TomnMod									148		1068
	Low Or 7		4.6	148	1068	Lun Lo a		The state of the s			
SS-11	The second se	-mo HRD	Sorted by strea	m segment		High Q, 5		Sorted by str	ream segmen	t	
SS-11 Statistics:	Hrd	Date	Sorted by strea	m segment	Zn	Hrd	Date	Sorted by st	ream segmen		Zn
SS-11 Statistics: Mean	Hrd 106	Date # samples	Sorted by strea Cd 1.3	m segment Cu 11.2	Zn 331	Hrd 50.8	Date # samples	Sorted by str	ream segmen Cu 9.1		149
SS-11 Statistics: Mean # Values	Hrd 106 239	Date	Sorted by strea Cd 1.3 301	m segment Cu 11.2 301	Zn 331 300	Hrd	Date	Sorted by str Cd 0.7 254	ream segmen Cu 9.1 254		
SS-11 Statistics: Mean # Values 85th %iles	Hrd 106 239	Date # samples	Sorted by strea Cd 1.3 301 1.9	m segment Cu 11.2 301 15.9	Zn 331 300 475	Hrd 50.8	Date # samples	Sorted by str	ream segmen Cu 9.1		149
SS-11 Statistics: Mean # Values 85th %iles FVSs	Hrd 106 239	Date # samples 308	Sorted by strea Cd 1.3 301	m segment Cu 11.2 301 15.9 9.4	Zn 331 300 475 124	Hrd 50.8	Date # samples	Sorted by str Cd 0.7 254	ream segmen Cu 9.1 254 13.8 5.0		149 254 217 66
SS-11 Statistics: Mean # Values 35th %iles IVSs FempMod	Hrd 106 239 AmbBase	Date # samples 308	Sorted by strea Cd 1.3 301 1.9 2.3	m segment Cu 11.2 301 15.9 9.4 17	Zn 331 300 475	Hrd 50.8 239	Date # samples 267	Sorted by sh Cd 0.7 254 1.0 1.4	ream segmen Cu 9.1 254 13.8 5.0 17		149 254 217
SS-11 Statistics: Mean # Values 35th %iles IVSs FempMod SS-13b	Hrd 106 239 AmbBase Low-Q; 7	Date # samples 308	Sorted by strea Cd 1.3 301 1.9	m segment Cu 11.2 301 15.9 9.4 17	Zn 331 300 475 124	Hrd 50.8	Date # samples 267	Sorted by sh Cd 0.7 254 1.0 1.4	ream segmen Cu 9.1 254 13.8 5.0 17		149 254 217 66
SS-11 Statistics: Mean # Values 35th %iles VSs FempMod SS-13b	Hrd 106 239 AmbBase	Date # samples 308	Sorted by strea Cd 1.3 301 1.9 2.3	m segment Cu 11.2 301 15.9 9.4 17	Zn 331 300 475 124 339	Hrd 50.8 239	Date # samples 267	Sorted by str Cd 254 1.0 1.4 Sorted by str	ream segmen Cu 9.1 254 13.8 5.0 17 ream segmen		149 254 217 66 339
SS-11 Statistics: Mean # Values 35th %iles IVSs FempMod SS-13b	Hrd 106 239 AmbBase Low-Q; 7	Date # samples 308	Sorted by strea	m segment Cu 11.2 301 15.9 9.4 17 m segment Cu	Zn 331 300 475 124 339 Zn	Hrd 50.8 239 High Q, 5 Hrd	Date # samples 267 -mo HRD Date	Sorted by str Cd 0.7 254 1.0 1.4 Sorted by str Cd	ream segmen Cu 9.1 254 13.8 5.0 17 ream segmen Cu		149 254 217 66 339 Zn
SS-11 Statistics: Mean # Values 85th %iles TVSs TempMod SS-13b Statistics:	Hrd 106 239 AmbBase Low-Q; 7 Hrd	Date # samples 308	Sorted by strea	m segment Cu 11.2 301 15.9 9.4 17 m segment	Zn 331 300 475 124 339 Zn 1386	Hrd 50.8 239 High Q, 5 Hrd 84.6	Date # samples 267 -mo HRD Date # samples	Sorted by sh Cd 0.7 254 1.0 1.4 Sorted by sh Cd 2.4	ream segmen Cu 9.1 254 13.8 5.0 17 ream segmen Cu 20.4		149 254 217 66 339 Zn 593
SS-11 Statistics: Mean # Values 85th %iles TVSs TempMod SS-13b Statistics: Mean # Values	Hrd 106 239 AmbBase Low-Q; 7 Hrd 210 136	Date # samples 308	Sorted by strea	m segment Cu 11.2 301 15.9 9.4 17 m segment Cu 38.6 194	Zn 331 300 475 124 339 Zn 1386 196	Hrd 50.8 239 High Q, 5 Hrd	Date # samples 267 -mo HRD Date	Sorted by sh Cd 0.7 254 1.0 1.4 Sorted by sh Cd 2.4 165	ream segmen Cu 9.1 254 13.8 5.0 17 ream segmen Cu 20.4 165		149 254 217 66 339 Zn 593 165
Statistics: Mean # Values 85th %iles TVSs TempMod SS-13b Statistics: Mean	Hrd 106 239 AmbBase Low-Q; 7 Hrd 210 136	Date # samples 308	Sorted by strea	m segment Cu 11.2 301 15.9 9.4 17 m segment Cu 38.6	Zn 331 300 475 124 339 Zn 1386	Hrd 50.8 239 High Q, 5 Hrd 84.6	Date # samples 267 -mo HRD Date # samples	Sorted by sh Cd 0.7 254 1.0 1.4 Sorted by sh Cd 2.4	ream segmen Cu 9.1 254 13.8 5.0 17 ream segmen Cu 20.4		149 254 217 66 339 Zn 593

it 120 0 6/23/05

Table 2-1 -- Superfund OU4 RI/FS and ROD updated information on CERCLA sources and control actions (Task 3)

n comments/status	Pilot passave (wetlands) treatment discontinued; overland untreated Qs to Clear Creek.	# No action in ROD; overland untreated Qs to Clear Creek.	# No action in ROD; overland untreated Qs to Clear Creek.	Interim action waiver of ARARs.	WWTP on-line, 4/98.	No action taken; decision deferred to OU4; Qs piped to NFCC.	Limited action taken, decision deferred to OU4; Qs piped to NFCC.	Limited action taken, decision deferred to OU4; Qs piped to NFCC.		*CDPHE-HMWVMD remediation in progress (AMEC contract).		Remediated; increased Qs treatment.	No action taken.	Consolidated and capped.	Graded/capped along CC; some material not identified as Superfund priority exists near tunnel portal.	Graded and capped.	Graded and capped; retaining walls; storm controls.	Some runoff controls in place; additional work is ongoing.	Removed.	Contained.	No action taken.	Two areas addressed: Prometheus (removal); Viento Vista (removal).	Three areas addressed: Eureka removal; Central City containment; Gold Rush treatment/containment.	Removed.	No action taken.	Removed/retaining walls at south 1/2; no action taken at north 1/2.	Removed (small amount remains underneath paved parking lot).	Removed.	Capped.	Capped.	
emearauo	Z	#	#	Z	\succ	Z	Z	z		*N		≻	Z	≻	×	≻	≻	Z	≻	≻	Z	≻	≻	×	Z	z	≻	۲	≻	≻	
	0U3	013	003	001,3	OU1,3	001,3	OU1,3	OU1,3	ings Area)	003		003	003	0U3	0U3	003	OU2, 3	OU2, 3	003	003	OU2, 3	0U3	003	003	0U3	OU3	OU2, 3	OU2, 3	003	003	
guerice # source Area egory A: Mine Tunnel Discharges	-01 Burleigh	-02 McClelland	-03 Rockford	-04 Big Five			-07 Gregory Incline	-88 National	egory B: Non-Point Sources (Idaho Spr	S Virginia Canyon	egory C: Tailings/Waste-Rock Piles	/-9 Urad	/-10 Empire	I-11 Lion Creek (Minnesota Mine)	I-12 McLelland	/-13 Black Eagle	1-14 Big Five	-15 Argo	1-16 Little Bear Creek	1-17 Boodle Mill	-18 Quartz Hill			'-21 Chase Gulch #1	1-22 Chase Gulch #2	-23 Golden Gilpin	-24 Gregory Incline	-25 National (Tunnel)	-26 North Clear Creek	-27 Clay County	
	equence # Source Area OU-KUD Kemediation Comments/Status ategory A: Mine Tunnel Discharges	nce # Source Area OU-KOU Кетеатаион ory A: Mine Tunnel Discharges OU3 N Burleigh OU3 N	Ince # Source Area OU-KOU Remearation ory A: Mine Tunnel Discharges OU3 N Burleigh OU3 N McClelland OU3 #	orde # Source Area OU-KOU Remearation ory A: Mine Tunnel Discharges OU3 N Burleigh OU3 N McClelland OU3 # Rockford OU3 # 8	DUC-FOUNCE ATER DIV A: Mine Tunnel Discharges OU3 N Burleigh OU3 N McClelland OU3 # Rockford OU3 # Big Five OU1,3 N	DUC-FOUR FARMER Source Area DY A: Mine Tunnel Discharges OU3 N Burleigh OU3 N McClelland OU3 # Rockford OU3 # Big Five OU1,3 N Argo OU1,3 Y	Dry A: Mine Tunnel Discharges DU-KUL Remeatation Dry A: Mine Tunnel Discharges 0U3 N Burtleigh 0U3 N McClelland 0U3 # Rockford 0U3 # Big Five 0U1,3 N Argo 0U1,3 N Quartz Hill 0U1,3 N	Arrise Source Area OU-FOU Remeatation by A: Mine Tunnel Discharges 0U3 N Burteigh 0U3 # McClelland 0U3 # Rockford 0U3 # Big Five 0U1,3 N Argo 0U1,3 Y Quartz Hill 0U1,3 N Gregory Incline 0U1,3 N	Dorse Source Area OU-FOU Remeatation Dry A: Mine Tunnel Discharges 0U3 N Burleigh 0U3 M McClelland 0U3 # Rockford 0U3 # Big Five 0U1,3 N Argo 0U1,3 Y Quartz Hill 0U1,3 N Gregory Incline 0U1,3 N National 0U1,3 N	Answer Source Area OU-FOU Remeatation by A: Mine Tunnel Discharges 0U3 N Burleigh 0U3 # McClelland 0U3 # Rockford 0U3 # Big Five 0U1,3 N Argo 0U1,3 N Quartz Hill 0U1,3 N Gregory Incline 0U1,3 N National 0U1,3 N	Answer Source Area OU-FOU Remeatation by A: Mine Tunnel Discharges 0U3 N Burleigh 0U3 N Burleigh 0U3 # McClelland 0U3 # Rockford 0U3 # Big Five 0U1,3 N Argo 0U1,3 N Quartz Hill 0U1,3 N Gregory Incline 0U1,3 N National 0U1,3 N VyB: Non-Point Sources (Idaho Springs Area) N* Virginia Canyon 0U3 N*	Arrier Source Area OU-FOU Remeatation by A: Mine Tunnel Discharges 0U3 N Burleigh 0U3 # McClelland 0U3 # Rockford 0U3 # Big Five 0U1,3 N Argo 0U1,3 Y Quartz Hill 0U1,3 N Gregory Incline 0U1,3 N National 0U1,3 N VY B: Non-Point Sources (Idaho Springs Area) N* Virginia Canyon 0U3 N*	Arge OUTER Source Area OUT-NUL Remeatation Dry A: Mine Tunnel Discharges DU3 N Burteigh McClelland OU3 # McClelland OU3 # # Rockford OU3 # # Big Five OU1,3 # # Argo OU1,3 N N Argo OU1,3 N N <	Difference Concertee Concertee Dy A: Mine Tunnel Discharges 0U3 N Burleigh 0U3 # McClelland 0U3 # Rockford 0U3 # Big Five 0U1,3 Y Argo 0U1,3 N Argo 0U1,3 N Cregory Incline 0U1,3 N National 0U1,3 N Virginia Canyon 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vired 0U3 Y Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y	Descention Descention Descention Dry A: Mine Tunnel Discharges DU3 N Burleigh N 0U3 # Burleigh 0U3 # # Rockford 0U3 # # Big Five 0U1,3 N Y Argo 0U1,3 N Y Argo 0U1,3 N N Argo 0U1,3 N Y Argo 0U1,3 N N National 0U1,3 N N Virginia Canyon 0U3 N* Urad Virginia Canyon 0U3 Y U Urad 0U3 Y U Urad 0U3 Y U Din Creek (Minnesota Mine) 0U3 Y	Description Description Dy A: Mine Tunnel Discharges 0U3 Burleigh 0U3 Burleigh 0U3 McClelland 0U3 Rockford 0U1,3 N 0U1,3 Argo 0U1,3 Argo 0U1,3 Argo 0U1,3 Argo 0U1,3 N 0U1,3 Argo 0U1,3 N 0U3 N </td <td>Data Source Area DO-NOL Remeatation Dry A: Mine Tunnel Discharges 0U3 # Burleigh 0U3 # McClelland 0U3 # Rockford 0U3 # Big Five 0U1,3 Y Argo 0U1,3 N Cregory Incline 0U1,3 N National 0U1,3 N Vargo 0U1,3 N Vargo 0U1,3 N Vargo 0U1,3 N Vartional 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Vrad 0U3 Y Varad 0U3 Y Vation Creek (Minnesota Mine) 0U3 Y McLelland 0U3 Y Black Eagle 0U3 Y Urad 0U3 Y</td> <td>Data Source Area DO-YOL remediation Dry A: Mine Tunnel Discharges 0U3 # Burleigh 0U3 # Rockford 0U3 # Rockford 0U1,3 * Rockford 0U1,3 * Big Five 0U1,3 * Argo 0U1,3 * Varginia 0U1,3 * Vartional 0U1,3 * Virginia Canyon 0U3 * Vriginia Canyon 0U3 * Vrad 0U3 * Virginia Canyon 0U3 * Virginia Canyon 0U3 * Visteree 0U3 * Visteree 0U3 * Visteree 0U3 * Visteree 0U3 *</td> <td>Data Source Area DO-NOL Remeatation Dy A: Mine Tunnel Discharges Burleigh Burleigh 0U3 McClelland 0U3 Rockford 0U3 Big Five 0U1,3 Argo 0U1,3 N 0U3 Y 0U3 Y 0U3 Y 0U3 <</td> <td>Data Source Area DO-NOL Remeatation Dy A: Mine Tunnel Discharges 0U3 # Burleigh 0U3 # Rockford 0U3 # Rockford 0U1,3 Y Rockford 0U1,3 Y Big Five 0U1,3 Y Argo 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N National 0U1,3 N Virginia Canyon 0U1,3 N* Virginia Canyon 0U3 N* Vriginia Canyon 0U3 Y Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vrad 0U3 Y Virginia Canyon 0U3 Y Vindeteek</td> <td>Dy A: Mine Tunnel Discharges DO-NOL Remeatation Burleigh 0U3 # Burleigh 0U3 # Rockford 0U3 # Rockford 0U1,3 Y Rockford 0U1,3 Y Big Five 0U1,3 Y Argo 0U1,3 N Cregory Incline 0U1,3 N National 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vrol 0U3 Y Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vrol 0U3 Y Virginia Canyon 0U3 Y Vrol 0U3 Y Virginia Canyon 0U3 Y V<td>Dy A: Mine Tunnel Discharges DO-NOL Remeatation Burleigh 0U3 # Burleigh 0U3 # Rockford 0U3 # Rockford 0U1,3 Y Rockford 0U1,3 Y Big Five 0U1,3 Y Argo 0U1,3 N Argo 0U1,3 N Vargo 0U1,3 N Vargo 0U1,3 N Vargo 0U1,3 N Vriginia Canyon 0U3 N* Vriginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vrad 0U3 Y Virginia Canyon 0U3 Y Vrad 0U3 Y Vational 0U3 Y Vrad 0U3 Y Bisck Eagle 0U3 Y Bisck Eagle 0U3 Y Bisck Eagle 0U3 Y Bisck Eagle 0U3 Y Boodle Mill 0U3 Y <</td><td>Type Source Area Outsing N Norclelland Burleigh 0U3 # Big Five 0U1,3 N # Rockford 0U1,3 N N Rockford 0U1,3 N N Big Five 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Virginia canyon 0U1,3 N N Virginia canyon 0U3 Y Y Virginia canyon 0U3 Y Y Vadd 0U3 Y Y Varad 0U3 Y Y Virginia canyon 0U3 Y Y V 0U3 Y Y Y Virginia canyon 0U3 Y Y V 0U3 Y Y Y V 0U3 Y Y Y Big Five</td><td>Type Source Area Outsource Area Type Burleigh 003 # Burleigh 003 # # McClelland 003 # # Rockford 0013 # # Rockford 0013 # # Rockford 0013 # # Rockford 0013 # # Argo 0011,3 N N Argo 0011,3 N N National 0013 N* N Virginia Canyon 003 N* N* Virginia Canyon 003 N* N* Vrad 003 N* N* Vard 003 N* Y Urad 003 Y N* Urad 003 Y Y Black Eagle 003 Y Y Big Five 002, 3 Y Y Big Five 002, 3 Y Y Boodle Mill 003 Y Y</td><td>Type Source Area Outsing N Norcleiland Burleigh 0U3 # Big Five 0U1,3 N Rockford 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Virginia 0U1,3 N Virginia canyon 0U1,3 N Virginia canyon 0U3 Y Virginia canyon 0U3 Y Virginia canyon 0U3 Y Vadd 0U3 Y Vadd 0U3 Y N 0U3 Y Big Five 0U3 Y Big Five 0U2,3 Y Big Five 0U2,3 Y Boodle Mil 0U3 Y Gregory Gulch #1 0U3 Y Gregory Gulch #1 0U3 Y Gregory Gulch #1<</td><td>Type Source Area Outsing N Norcleiland Burleigh 0U3 # Big Five 0U1,3 N N Rockford 0U1,3 N N Rockford 0U1,3 N N Big Five 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Virginia 0U1,3 N N Virginia canyon 0U3 N* N Virginia canyon 0U3 Y N Vadd 0U3 Y N Varad 0U3 Y N Virginia canyon 0U3 Y Y Virginia canyon 0U3 Y Y Vadd 0U3 Y Y V 0U3 Y Y Big Five 0U3 Y Y Big Five 0U3 Y Y Big Five 0U3 Y <td< td=""><td>Ty A: Mine Turnel Discharges Jource Area Jource Area Ty A: Mine Turnel Discharges 0U3 # Burleigh 0U3 # McClelland 0U3 # Rockford 0U1,3 N Rockford 0U1,3 N Rockford 0U1,3 N Rockford 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Virginia 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vadd 0U3 Y Vadd 0U3 Y McLelland 0U3 Y Big Five 0U3 Y Big Five 0U2,3 Y Big Five 0U2,3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease</td><td>Type: Concention Concentee Concentee Type: Burleigh 0U3 # Big Five 0U1,3 N Rockford 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Virginia 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vadd 0U3 Y Vadd 0U3 Y Vadd 0U3 Y Big Five 0U2,3 Y Big Five 0U2,3 Y Big Five 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #</td><td>Type: Concentee Concentee Concentee Type: Burleigh 0U3 N Big Five 0U3 N N Rockford 0U3 N N Rockford 0U1,3 N N Big Five 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Virginia Canyon 0U3 Y N Urad U13 Y Big Five 0U3 Y Y Big Five 0U3 Y Y Big Five 0U3 <td< td=""><td>Ty A: Mine Tunnel Discharges Outon N Burleigh 0U3 # Burleigh 0U3 # Necclelland 0U3 # Rockford 0U1,3 N Argo 0U1,3 N Virginia Canyon 0U3 N* Virgine Canyon 0U3 N*</td><td>c) 003 N 003 003 003 001,3 001,3 001,3 001,3 001,3 001,3 001,3 001,3 N 001,3 N 001,3 N 001,3 N 001,3 N 001,3 N 0013 N 003 013 003 N 003 N</td></td<></td></td<></td></td>	Data Source Area DO-NOL Remeatation Dry A: Mine Tunnel Discharges 0U3 # Burleigh 0U3 # McClelland 0U3 # Rockford 0U3 # Big Five 0U1,3 Y Argo 0U1,3 N Cregory Incline 0U1,3 N National 0U1,3 N Vargo 0U1,3 N Vargo 0U1,3 N Vargo 0U1,3 N Vartional 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Vrad 0U3 Y Varad 0U3 Y Vation Creek (Minnesota Mine) 0U3 Y McLelland 0U3 Y Black Eagle 0U3 Y Urad 0U3 Y	Data Source Area DO-YOL remediation Dry A: Mine Tunnel Discharges 0U3 # Burleigh 0U3 # Rockford 0U3 # Rockford 0U1,3 * Rockford 0U1,3 * Big Five 0U1,3 * Argo 0U1,3 * Varginia 0U1,3 * Vartional 0U1,3 * Virginia Canyon 0U3 * Vriginia Canyon 0U3 * Vrad 0U3 * Virginia Canyon 0U3 * Virginia Canyon 0U3 * Visteree 0U3 * Visteree 0U3 * Visteree 0U3 * Visteree 0U3 *	Data Source Area DO-NOL Remeatation Dy A: Mine Tunnel Discharges Burleigh Burleigh 0U3 McClelland 0U3 Rockford 0U3 Big Five 0U1,3 Argo 0U1,3 N 0U3 Y 0U3 Y 0U3 Y 0U3 <	Data Source Area DO-NOL Remeatation Dy A: Mine Tunnel Discharges 0U3 # Burleigh 0U3 # Rockford 0U3 # Rockford 0U1,3 Y Rockford 0U1,3 Y Big Five 0U1,3 Y Argo 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N National 0U1,3 N Virginia Canyon 0U1,3 N* Virginia Canyon 0U3 N* Vriginia Canyon 0U3 Y Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vrad 0U3 Y Virginia Canyon 0U3 Y Vindeteek	Dy A: Mine Tunnel Discharges DO-NOL Remeatation Burleigh 0U3 # Burleigh 0U3 # Rockford 0U3 # Rockford 0U1,3 Y Rockford 0U1,3 Y Big Five 0U1,3 Y Argo 0U1,3 N Cregory Incline 0U1,3 N National 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vrol 0U3 Y Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vrol 0U3 Y Virginia Canyon 0U3 Y Vrol 0U3 Y Virginia Canyon 0U3 Y V <td>Dy A: Mine Tunnel Discharges DO-NOL Remeatation Burleigh 0U3 # Burleigh 0U3 # Rockford 0U3 # Rockford 0U1,3 Y Rockford 0U1,3 Y Big Five 0U1,3 Y Argo 0U1,3 N Argo 0U1,3 N Vargo 0U1,3 N Vargo 0U1,3 N Vargo 0U1,3 N Vriginia Canyon 0U3 N* Vriginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vrad 0U3 Y Virginia Canyon 0U3 Y Vrad 0U3 Y Vational 0U3 Y Vrad 0U3 Y Bisck Eagle 0U3 Y Bisck Eagle 0U3 Y Bisck Eagle 0U3 Y Bisck Eagle 0U3 Y Boodle Mill 0U3 Y <</td> <td>Type Source Area Outsing N Norclelland Burleigh 0U3 # Big Five 0U1,3 N # Rockford 0U1,3 N N Rockford 0U1,3 N N Big Five 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Virginia canyon 0U1,3 N N Virginia canyon 0U3 Y Y Virginia canyon 0U3 Y Y Vadd 0U3 Y Y Varad 0U3 Y Y Virginia canyon 0U3 Y Y V 0U3 Y Y Y Virginia canyon 0U3 Y Y V 0U3 Y Y Y V 0U3 Y Y Y Big Five</td> <td>Type Source Area Outsource Area Type Burleigh 003 # Burleigh 003 # # McClelland 003 # # Rockford 0013 # # Rockford 0013 # # Rockford 0013 # # Rockford 0013 # # Argo 0011,3 N N Argo 0011,3 N N National 0013 N* N Virginia Canyon 003 N* N* Virginia Canyon 003 N* N* Vrad 003 N* N* Vard 003 N* Y Urad 003 Y N* Urad 003 Y Y Black Eagle 003 Y Y Big Five 002, 3 Y Y Big Five 002, 3 Y Y Boodle Mill 003 Y Y</td> <td>Type Source Area Outsing N Norcleiland Burleigh 0U3 # Big Five 0U1,3 N Rockford 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Virginia 0U1,3 N Virginia canyon 0U1,3 N Virginia canyon 0U3 Y Virginia canyon 0U3 Y Virginia canyon 0U3 Y Vadd 0U3 Y Vadd 0U3 Y N 0U3 Y Big Five 0U3 Y Big Five 0U2,3 Y Big Five 0U2,3 Y Boodle Mil 0U3 Y Gregory Gulch #1 0U3 Y Gregory Gulch #1 0U3 Y Gregory Gulch #1<</td> <td>Type Source Area Outsing N Norcleiland Burleigh 0U3 # Big Five 0U1,3 N N Rockford 0U1,3 N N Rockford 0U1,3 N N Big Five 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Virginia 0U1,3 N N Virginia canyon 0U3 N* N Virginia canyon 0U3 Y N Vadd 0U3 Y N Varad 0U3 Y N Virginia canyon 0U3 Y Y Virginia canyon 0U3 Y Y Vadd 0U3 Y Y V 0U3 Y Y Big Five 0U3 Y Y Big Five 0U3 Y Y Big Five 0U3 Y <td< td=""><td>Ty A: Mine Turnel Discharges Jource Area Jource Area Ty A: Mine Turnel Discharges 0U3 # Burleigh 0U3 # McClelland 0U3 # Rockford 0U1,3 N Rockford 0U1,3 N Rockford 0U1,3 N Rockford 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Virginia 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vadd 0U3 Y Vadd 0U3 Y McLelland 0U3 Y Big Five 0U3 Y Big Five 0U2,3 Y Big Five 0U2,3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease</td><td>Type: Concention Concentee Concentee Type: Burleigh 0U3 # Big Five 0U1,3 N Rockford 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Virginia 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vadd 0U3 Y Vadd 0U3 Y Vadd 0U3 Y Big Five 0U2,3 Y Big Five 0U2,3 Y Big Five 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #</td><td>Type: Concentee Concentee Concentee Type: Burleigh 0U3 N Big Five 0U3 N N Rockford 0U3 N N Rockford 0U1,3 N N Big Five 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Virginia Canyon 0U3 Y N Urad U13 Y Big Five 0U3 Y Y Big Five 0U3 Y Y Big Five 0U3 <td< td=""><td>Ty A: Mine Tunnel Discharges Outon N Burleigh 0U3 # Burleigh 0U3 # Necclelland 0U3 # Rockford 0U1,3 N Argo 0U1,3 N Virginia Canyon 0U3 N* Virgine Canyon 0U3 N*</td><td>c) 003 N 003 003 003 001,3 001,3 001,3 001,3 001,3 001,3 001,3 001,3 N 001,3 N 001,3 N 001,3 N 001,3 N 001,3 N 0013 N 003 013 003 N 003 N</td></td<></td></td<></td>	Dy A: Mine Tunnel Discharges DO-NOL Remeatation Burleigh 0U3 # Burleigh 0U3 # Rockford 0U3 # Rockford 0U1,3 Y Rockford 0U1,3 Y Big Five 0U1,3 Y Argo 0U1,3 N Argo 0U1,3 N Vargo 0U1,3 N Vargo 0U1,3 N Vargo 0U1,3 N Vriginia Canyon 0U3 N* Vriginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vrad 0U3 Y Virginia Canyon 0U3 Y Vrad 0U3 Y Vational 0U3 Y Vrad 0U3 Y Bisck Eagle 0U3 Y Bisck Eagle 0U3 Y Bisck Eagle 0U3 Y Bisck Eagle 0U3 Y Boodle Mill 0U3 Y <	Type Source Area Outsing N Norclelland Burleigh 0U3 # Big Five 0U1,3 N # Rockford 0U1,3 N N Rockford 0U1,3 N N Big Five 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Virginia canyon 0U1,3 N N Virginia canyon 0U3 Y Y Virginia canyon 0U3 Y Y Vadd 0U3 Y Y Varad 0U3 Y Y Virginia canyon 0U3 Y Y V 0U3 Y Y Y Virginia canyon 0U3 Y Y V 0U3 Y Y Y V 0U3 Y Y Y Big Five	Type Source Area Outsource Area Type Burleigh 003 # Burleigh 003 # # McClelland 003 # # Rockford 0013 # # Rockford 0013 # # Rockford 0013 # # Rockford 0013 # # Argo 0011,3 N N Argo 0011,3 N N National 0013 N* N Virginia Canyon 003 N* N* Virginia Canyon 003 N* N* Vrad 003 N* N* Vard 003 N* Y Urad 003 Y N* Urad 003 Y Y Black Eagle 003 Y Y Big Five 002, 3 Y Y Big Five 002, 3 Y Y Boodle Mill 003 Y Y	Type Source Area Outsing N Norcleiland Burleigh 0U3 # Big Five 0U1,3 N Rockford 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Virginia 0U1,3 N Virginia canyon 0U1,3 N Virginia canyon 0U3 Y Virginia canyon 0U3 Y Virginia canyon 0U3 Y Vadd 0U3 Y Vadd 0U3 Y N 0U3 Y Big Five 0U3 Y Big Five 0U2,3 Y Big Five 0U2,3 Y Boodle Mil 0U3 Y Gregory Gulch #1 0U3 Y Gregory Gulch #1 0U3 Y Gregory Gulch #1<	Type Source Area Outsing N Norcleiland Burleigh 0U3 # Big Five 0U1,3 N N Rockford 0U1,3 N N Rockford 0U1,3 N N Big Five 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Virginia 0U1,3 N N Virginia canyon 0U3 N* N Virginia canyon 0U3 Y N Vadd 0U3 Y N Varad 0U3 Y N Virginia canyon 0U3 Y Y Virginia canyon 0U3 Y Y Vadd 0U3 Y Y V 0U3 Y Y Big Five 0U3 Y Y Big Five 0U3 Y Y Big Five 0U3 Y <td< td=""><td>Ty A: Mine Turnel Discharges Jource Area Jource Area Ty A: Mine Turnel Discharges 0U3 # Burleigh 0U3 # McClelland 0U3 # Rockford 0U1,3 N Rockford 0U1,3 N Rockford 0U1,3 N Rockford 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Virginia 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vadd 0U3 Y Vadd 0U3 Y McLelland 0U3 Y Big Five 0U3 Y Big Five 0U2,3 Y Big Five 0U2,3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease</td><td>Type: Concention Concentee Concentee Type: Burleigh 0U3 # Big Five 0U1,3 N Rockford 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Virginia 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vadd 0U3 Y Vadd 0U3 Y Vadd 0U3 Y Big Five 0U2,3 Y Big Five 0U2,3 Y Big Five 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #</td><td>Type: Concentee Concentee Concentee Type: Burleigh 0U3 N Big Five 0U3 N N Rockford 0U3 N N Rockford 0U1,3 N N Big Five 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Virginia Canyon 0U3 Y N Urad U13 Y Big Five 0U3 Y Y Big Five 0U3 Y Y Big Five 0U3 <td< td=""><td>Ty A: Mine Tunnel Discharges Outon N Burleigh 0U3 # Burleigh 0U3 # Necclelland 0U3 # Rockford 0U1,3 N Argo 0U1,3 N Virginia Canyon 0U3 N* Virgine Canyon 0U3 N*</td><td>c) 003 N 003 003 003 001,3 001,3 001,3 001,3 001,3 001,3 001,3 001,3 N 001,3 N 001,3 N 001,3 N 001,3 N 001,3 N 0013 N 003 013 003 N 003 N</td></td<></td></td<>	Ty A: Mine Turnel Discharges Jource Area Jource Area Ty A: Mine Turnel Discharges 0U3 # Burleigh 0U3 # McClelland 0U3 # Rockford 0U1,3 N Rockford 0U1,3 N Rockford 0U1,3 N Rockford 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Virginia 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vadd 0U3 Y Vadd 0U3 Y McLelland 0U3 Y Big Five 0U3 Y Big Five 0U2,3 Y Big Five 0U2,3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease	Type: Concention Concentee Concentee Type: Burleigh 0U3 # Big Five 0U1,3 N Rockford 0U1,3 N Argo 0U1,3 N Argo 0U1,3 N Virginia 0U1,3 N Virginia Canyon 0U3 N* Virginia Canyon 0U3 Y Virginia Canyon 0U3 Y Vadd 0U3 Y Vadd 0U3 Y Vadd 0U3 Y Big Five 0U2,3 Y Big Five 0U2,3 Y Big Five 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #1 0U3 Y Crease Gulch #	Type: Concentee Concentee Concentee Type: Burleigh 0U3 N Big Five 0U3 N N Rockford 0U3 N N Rockford 0U1,3 N N Big Five 0U1,3 N N Argo 0U1,3 N N Argo 0U1,3 N N Virginia Canyon 0U3 Y N Urad U13 Y Big Five 0U3 Y Y Big Five 0U3 Y Y Big Five 0U3 <td< td=""><td>Ty A: Mine Tunnel Discharges Outon N Burleigh 0U3 # Burleigh 0U3 # Necclelland 0U3 # Rockford 0U1,3 N Argo 0U1,3 N Virginia Canyon 0U3 N* Virgine Canyon 0U3 N*</td><td>c) 003 N 003 003 003 001,3 001,3 001,3 001,3 001,3 001,3 001,3 001,3 N 001,3 N 001,3 N 001,3 N 001,3 N 001,3 N 0013 N 003 013 003 N 003 N</td></td<>	Ty A: Mine Tunnel Discharges Outon N Burleigh 0U3 # Burleigh 0U3 # Necclelland 0U3 # Rockford 0U1,3 N Argo 0U1,3 N Virginia Canyon 0U3 N* Virgine Canyon 0U3 N*	c) 003 N 003 003 003 001,3 001,3 001,3 001,3 001,3 001,3 001,3 001,3 N 001,3 N 001,3 N 001,3 N 001,3 N 001,3 N 0013 N 003 013 003 N 003 N

Table 2-2

Selected Water-Quality Characteristics, Mine-Impacted Source Areas

Sources: Bell (1999, Tables 14, 16, 17, and 20); J. Herron, written commun., 1/21/05; RMC (2002, Table 2.3-2) Lewis (1995; 2001a; 2001b); Medine (1996); Tt-RMC (2004a, Appendix A). BDL/U = below detection limit. ID Description Source Date Flow, cfs pH D-Cd, ug/L D-Cu, ug/L D-Zn, ug/L Source/Notes Mainstem Clear Creek Sub-Watershed SS-55 Silver Plume Mine PhsllAddm Apr-89 SS-56 **Terrible Mine** PhsilAddm Apr-89 SS-81 Johnny Bull Mine PhsllAddm Apr-89 8.0 <20 ---SW-27 **Burleigh Tunnel** Phase II 6/13/89 0.100 48.0 4.0 21100 Lewis (1995); Bell (1999) HF **Burleigh Tunnel** 6/13/89 Bell (1999, App. B, T. 24) 2X SW-27 **Burleigh Tunnel** Phase II 9/20/89 0.072 76.0 0.5 50200 Lewis (1995); Bell (1999) HF RemDsgn SW-27 **Burleigh Tunnel** 4/21/92 0.05 111 60700 Lewis (2003, Table 1); ?? 8.6 1 F SW-27 **Burleigh Tunnel** CDM Dec-93 0.08 63000 Lewis (2003, Table 1) LF SW-27 **Burleigh Tunnel** USEPA 10/29/95 0.065 7.50 242 4.3 1020 Medine (1996) 1 F SW-27 **Burleigh Tunnel** USEPA 6/3/97 7.39 144 8.56 56010 Bell (1999) HF SW-27 **Burleigh Tunnel** USEPA 7/5/97 0.115 7.48 136 69 65400 Bell (1999) HF SW-27 **Burleigh Tunnel** CDPHE Oct-97 0.07 89000 Lewis (2003, Table 1) LF SW-27 Burleigh Tunnel CDPHE Oct-99 0.07 81000 Lewis (2003, Table 1) LF SW-27 **Burleigh Tunnel** CDPHE Sep-00 0.06 52000 Lewis (2003, Table 1) HF SW-27 **Burleigh Tunnel** CDPHE Oct-01 0.07 51000 Lewis (2003, Table 1) LF SW-201 Ashby Tunnel RemDsgn Dec-93 ?? 22 Lewis (2003)-Zn, 0.0008 lb/d SW-31 Lion Creek Phase II 6/13/89 1.70 1.1 192 164 Lewis (1995); Bell (1999) SW-31 Lion Creek Phase II 9/18/89 0.280 27 508 674 Lewis (1995); Bell (1999) M-1 Minnesota Mine CDPHE 5/26/94 0.011 < 5 550 900 CDPHE (1995) Aorta Tunnel dsch USEPA 4/4/94 220 533 USEPA (1994) M-2 Aorta Mine CDPHE 0.023 5/26/94 < 5 470 660 CDPHE (1995) SW-53 McClelland Tunnel Phase II 6/15/89 0.051 19.9 114 3970 HF SW-53 McClelland Tunnel 9/18/89 Phase II 0.027 14 0 24.0 3360 °Q, 9/19? HF McClelland Tunnel 9/19/89 18 154 5310 Bell (1999, App. B, T.32) HF McClelland outfall USEPA 4/4/94 14.3 46 3013 USEPA (1994) LF (CC-)SW-53 McClelland Tunnel CDPHE 11/6/01 0.07 6.47 7.4 13.9 3220 Lewis (2001b) LF SW-53 McClelland Tunnel CDPHE 5/22/02 0.067 6.46 134 15.7 2920 HF SW-17 Rockford Tunnel 6/12/89 Phase II 0.024 11.3 710 3750 Lewis (1995); Bell (1999) HF SW-17 Rockford Tunnel Phase II 9/19/89 0.010 14.0 1260 5050 Lewis (1995); Bell (1999) HF Rockford Tunnel 9/19/89 5139 Bell (1999, App. B, T.32) 14 1261 HF (CC-)SW-17 Rockford Tunnel CDPHE 0 011 11/6/01 3 41 20.0 2180 3990 Lewis (2001b) LF SW-17(O) Rockford Tunnel USEPA 10/27/95 0.015 3 36 24.4 1390 3720 Medine (1996) LF SW-17(O) Rockford Tunnel USEPA 4/14/97 0.028 3 52 17.2 1420 3400 Bell (1999) LF SW-17(0) Rockford Tunnel USEPA 5/28/97 3 57 6.39 711 1573 Bell (1999) HF SW-17 Rockford Tunnel CDPHE 5/22/02 0.010 3.44 13.9 1470 3420 Tt-RMC (2004a) HF #2 diss Alice Glory Hole CDMG-JH May-01 0 047 2.65 BDL 19633 884 Jim Herron (1/21/05) #2 diss Alice Glory Hole CDMG-JH October-01 0.001 3.28 35.6 20221 1401 Jim Herron (1/26/05) SW-40 Trail Creek Phase I 2/18/86 11 528 2760 Bell (1999, App. B) IF SW-14 Trail Creek Phase II 6/12/89 1.40 4.0 49.5 680 Lewis (1995); Bell (1999) HF Trail Creek 6/12/89 3.7 85 655 Bell (1999, p. 30) HF SW-14 Trail Creek Phase II 9/19/89 0.280 3.0 63.0 880 Lewis (1995); Bell (1999) HF Trail Creek 9/19/89 3 71 929 Bell (1999, Table 30) HF Trail Creek 9/19/80 Bell (1999, App. B, T. 32)2X SW-14 Trail Creek USEPA Oct-95 5.6 173 1071 Bell (1999, Table 30) LF Trail Creek USEPA 10/27/95 0.339 5.86 5.5 176 1122 Medine (1996); Bell (1999) LF SW-14 Trail Creek USEPA Apr-97 4.3 105 911 Bell (1999, Table 30) LF Trail Creek USEPA 4/14/97 0.390 5.83 4.2 87.3 944 Bell (1999) 1F SW-14 Trail Creek USEPA Jun-97 2.84 97.2 466 Bell (1999, Table 30) HF Trail Creek USEPA 6/2/97 7.21 2.76 55.7 480 Bell (1999, App. B) HF SW-14 Trail Creek CDPHF 11/5/01 0.13 7.41 3.8 74.4 870 Lewis (2001b) LF CC-31 Trail Creek USEPA 2/10/05 4.21 168 1160 USEPA data trans., 4/4 LF SW-24 **Big Five Tunnel** Phase I 10/30/85 56 3040 20840 Bell (1999, App. B) LF SW-023 **Big Five Tunnel** Phase I 2/19/86 2740 96 18840 Bell (1999, App. B) 1 F SW-023 5/19/86 **Big Five Tunnel** Phase I 58 2900 18800 Bell (1999, App. B) HF SW-12 **Big Five Tunnel** Phase II 6/13/89 0.037 27.0 690

HF

9100 Lewis (1995); Bell (1999)

Selected Water-Quality Characteristics, Mine-Impacted Source Areas

Sources:	Bell (1999, Tables 1	14, 16, 17, a	nd 20); J. Hem	on, written co	mmun., 1/2 ⁻	1/05; RMC (2002, Tat	ble 2.3-2)		
10	Lewis (1995; 2001a	; 2001b); M	edine (1996); T	t-RMC (2004	a, Appendix	(A).		BDL/U = b	elow detection limit.	
ID Mainstem Cli	Description ear Creek Sub-Waters	Source	Date	Flow, cfs	pH D	-Cd, ug/L D-	Cu, ug/L	D-Zn, ug/L	Source/Notes	
indinotenn Qit	Big Five Tunnel	51160 = 00111.	6/13/89						Doll (1000 And D T 0 400V	
SW-12	Big Five Tunnel	Phase II	9/19/89	0.031		38.0	627	6730	Bell (1999, App.B, T.24)2X Lewis (1995); Bell (1999)	HF
	Big Five Tunnel		9/19/89			24	607		Bell (1999, App. B, T. 32)	HF
SW-12	Big Five Tunnel	RemDsgn	4/21/92			52.0	3230	11900	(LF
SW-12	Big Five Tunnel	USEPA	4/14/97	0.006	2.71	23.4	1530	9120	Bell (1999)	LF
SW-12	Big Five Tunnel	USEPA	10/27/95	0.008	2.67	53.0	7570	1310	Medine (1996)	LF
(CC-)SW-12 SW-12		CDPHE	11/7/01	0.04	3.19	238.0	1500		Lewis (2001b)	LF
044-12	Big Five Tunnel	CDPHE	5/22/02	0.047	3.45	21.5	1170	8500	Tt-RMC (2004a)	HF
SW-19	Virginia Canyon ?		10/30/85			1240	50000	204020	B-11 (1000 A-+ D)	
SW-26	VC above CC		10/30/85			1340 800	58600 17120		Bell (1999, App. B)	LF
SW-26	VC above CC		5/19/86			1236	3200		Bell (1999, App. B) Bell (1999, App. B);Znx1K	LF HF
CDMG-2	VC above CP/VA	CDMG	8/17/00	0.89	2.70	48.9	3955		Herron and others (2001)	HF
CDMG-3	VC below CP/VA	CDMG	8/17/00	1.19	2.87	64.1	4433		Herron and others (2001)	HF
CDMG-4	VC ab TwoBrothers		8/17/00	1.23	3.15	22.7	1200		Herron and others (2001)	HF
CDMG-6	VC ab Robinson GI		8/17/00	1.84	2.84	1090	12260	176400	Herron and others (2001)	HF
CDMG-9	VC bl Robinson Gl	CDMG	8/17/00	1.96	3.15	441	10290	88010	Herron and others (2001)	HF
CDMG-15 CDMG-22	VC bl Boomerang	CDMG	8/17/00	3.31	3.31	349	4026		Herron and others (2001)	HF
CDIVIG-22	VC at pavement end	CDMG	8/17/00	4.82	3.90	313	2137	40050	Herron and others (2001)	HF
SW-020	Argo at portal	Phase I	1985							
SW-020	Argo at portal	Phase I	2/19/86			256	9160	86800	Bell (1999, App. B)	
SW-020	Argo at portal	Phase I	6/3/86			244	12120		Bell (1999, App. B)	
SW-020	Argo at portal	Phsl Addr	Арг-87				1	00000	Don (1000, 1400. D)	
SW-06	Argo Tunnel	Phase II	6/12/89	0.53		120	5100	41000	Lewis (1995); Bell (1999)	
	Argo Tunnel		6/13/89			240	10200	82000	Bell (1999, App. B, Table 2	24)
SW-06	Argo Tunnel	Phase II	9/19/89	0.41		123	4780	41300	Lewis (1995); Bell (1999)	
SW-06	Argo Tunnel	USEPA	9/19/89	0.500	0.07	109	4803		Bell (1999, App. B, Table 3	32)
SW-06	Argo Tunnel Argo Tunnel	USEPA	10/26/95 6/2/97	0.563	2.87	203	7740		Medine (1996)	
CC-99a	Argo Adit*(treated)	USEPA	8/13/02		2.69	158	6477	in a subscription of the state of the party	Bell (1999, App. B) TDS (2002)	
		OOLIA	UTUUZ							
CC-99a	Argo Adit*(treated)	USEPA	2/10/05							
CC-99a	Argo Adit*(treated)	VSEPA * Note: Exc	2/10/05 cel file from Ro.	n Abel, CDPI	HE-HMWML	<2	10.2	<5	USEPA data trans., 4/4	
NFCC Sub-W	/atershed			n Abel, CDPI	HE-HMWML	<2	10.2	<5		
NFCC Sub-W SS-15	/atershed Chase Guich	* Note: Exc Phase II R	cel file from Ro.	n Abel, CDPI	HE-HMWML 7.4	<2	10.2	<5	USEPA data trans., 4/4	LF
NFCC Sub-W SS-15 SW-47	/atershed Chase Guich Chase Guich	* Note: Exc Phase II R Phase II	cel file from Ro. Apr-89 6/19/89	0.810	7.4	<2 D for post-tre 1.9	10.2 eatment di – 16.0	<5 ischarge W 60 557	USEPA data trans., 4/4	HF
NFCC Sub-W SS-15	/atershed Chase Guich Chase Gulch Chase Gulch	* Note: Exc Phase II R	cel file from Ro. Apr-89 6/19/89 9/19/89			<2 D for post-tre 1.9 ?	10.2 eatment di _ 16.0	<5 ischarge W 60 557 ?	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999)	HF HF
NFCC Sub-W SS-15 SW-47 SW-47	/atershed Chase Guich Chase Guich Chase Guich Chase Guich	* Note: Exc Phase II R Phase II Phase II	Apr-89 6/19/89 9/19/89 9/19/89	0.810	7.4	<2 D for post-tre 1.9	10.2 eatment di – 16.0	<5 ischarge W 60 557 ?	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999)	HF
NFCC Sub-W SS-15 SW-47 SW-47 WQ-6	/atershed Chase Gulch Chase Gulch Chase Gulch Chase Gulch Chase Gulch	* Note: Exc Phase II R Phase II Phase II CCWDP	Apr-89 6/19/89 9/19/89 9/19/89 9/19/89 92-94	0.810 0.050	7.4	<2 D for post-tre 1.9 ? 12	10.2 eatment di - 16.0 22	<5 ischarge W 60 557 ? 5500	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32)	HF HF HF
NFCC Sub-W SS-15 SW-47 SW-47	/atershed Chase Gulch Chase Gulch Chase Gulch Chase Gulch Chase Gulch Chase Gulch*	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 92-94 7/26/94	0.810 0.050 0.5	7.4 ? 7.6	<2 D for post-tre 1.9 ? 12 0.9	10.2 eatment di - 16.0 22 4.3	<5 ischarge W 60 557 ? 5500 280	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995)	HF HF HF
NFCC Sub-W SS-15 SW-47 SW-47 WQ-6 NCC-SW-29	/atershed Chase Gulch Chase Gulch Chase Gulch Chase Gulch Chase Gulch	* Note: Exc Phase II R Phase II Phase II CCWDP	Apr-89 6/19/89 9/19/89 9/19/89 9/19/89 92-94	0.810 0.050	7.4 ? 7.6 6.98	<2 D for post-tre 1.9 ? 12 0.9 15.6	10.2 eatment di 	<5 ischarge W 60 557 ? 5500 280 4209	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999)	HF HF HF HF
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47	/atershed Chase Gulch Chase Gulch Chase Gulch Chase Gulch Chase Gulch Chase Gulch* Chase Gulch	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 9/19/89 92-94 7/26/94 10/25/95	0.810 0.050 0.5 0.186	7.4 ? 7.6	<2 D for post-tre 1.9 ? 12 0.9	10.2 eatment di 16.0 22 4.3 11.0 14.6	<5 ischarge W 60 557 ? 5500 280 4209 1530	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999)	HF HF HF LF LF
NFCC Sub-W SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29	Atershed Chase Guich Chase Guich Chase Guich Chase Guich Chase Guich Chase Guich Chase Guich Chase Guich Chase Guich Chase Guich	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA USEPA CDPHE	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 9/19/89 9/19/89 9/2-94 7/26/94 10/25/95 4/11/97 6/2/97 11/19/01	0.810 0.050 0.5 0.186	7.4 ? 7.6 6.98 7.60	<2 D for post-tre 1.9 ? 12 0.9 15.6 5.2	10.2 eatment di 	<5 ischarge W 60 557 ? 5500 280 4209 1530 252	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999)	HF HF HF LF LF HF
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47	/atershed Chase Gulch Chase Gulch Chase Gulch Chase Gulch Chase Gulch* Chase Gulch Chase Gulch Chase Gulch	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA USEPA	cel file from Ro. 6/19/89 9/19/89 9/19/89 92-94 7/26/94 10/25/95 4/11/97 6/2/97	0.810 0.050 0.5 0.186	7.4 ? 7.6 6.98 7.60	<2 D for post-tre 1.9 ? 12 0.9 15.6 5.2 1.15	10.2 eatment di 16.0 22 4.3 11.0 14.6 7.51	<5 ischarge W 60 557 ? 5500 280 4209 1530 252 1790	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999, App. B)	HF HF HF LF LF
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29	Vatershed Chase Gulch Chase Gulch Chase Gulch Chase Gulch Chase Gulch* Chase Gulch* Chase Gulch Chase Gulch Chase Gulch Chase Gulch Chase Gulch	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA CDPHE CDPHE	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 92-94 7/26/94 10/25/95 4/11/97 6/2/97 11/19/01 5/21/02	0.810 0.050 0.5 0.186 -	7.4 ? 7.6 6.98 7.60 7.65 7.68	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 Ijacent sample,	10.2 hatment da 	<5 ischarge W 60 557 ? 280 4209 1530 252 1790 1621	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b)	HF HF HF LF LF LF
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46	Vatershed Chase Gulch Chase Gulch	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA CDPHE CDPHE Phase II	cel file from Ro. Apr-89 6/19/89 9/19/89 92-94 7/26/94 10/25/95 4/11/97 6/2/97 11/19/01 5/21/02 6/19/89	0.810 0.050 0.5 0.186 0.310	7.4 ? 7.6 6.98 7.60 7.65 7.68	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 Ijacent sample, 12.0	10.2 hatment da 16.0 22 4.3 11.0 14.6 7.51 6.77 6.92 326/95; 6/ 750	<5 ischarge W 60 557 ? 5500 280 4209 1530 252 1790 1621 7/95 19000	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999)	HF HF HF LF HF HF
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46 SW-46	Vatershed Chase Guich Chase Guich	* Note: Exa Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA USEPA USEPA CDPHE CDPHE Phase II Phase II	cel file from Ro. Apr-89 6/19/89 9/19/89 92-94 7/26/94 10/25/95 4/11/97 6/297 11/19/01 5/21/02 6/19/89 9/18/89	0.810 0.050 0.5 0.186 - 0.310 * Stream represe	7.4 ? 7.6 6.98 7.60 7.65 7.68 7.68	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 Ujacent sample, 12.0 15.0	10.2 hatment da - 16.0 22 4.3 11.0 14.6 7.51 6.77 6.92 32695 6.7 750 376	<5 ischarge W 60 557 ? 5500 4209 1530 252 1790 1621 795 19000 5470	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995); Bell (1999)	HF HF HF LF HF HF
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46 SW-46 SW-46 NCC-SW-27	Atershed Chase Guich Chase Guich	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA USEPA CDPHE CDPHE Phase II CDPHE	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 9/2-94 7/26/94 10/25/95 4/11/97 6/297 11/19/01 5/21/02 6/19/89 9/18/89 7/22/94	0.810 0.050 0.5 0.186 0.310 * Stream repress 0.23	7.4 ? 6.98 7.60 7.65 7.68 ented by an adj	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 12.0 15.0 7.0	10.2 hatment da 	<5 ischarge W 60 557 ? 5500 280 4209 1530 252 1790 1621 795 19000 5470 5310	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Lewis (1995)	HF HF HF LF HF HF HF HF
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46 SW-46	Vatershed Chase Gulch Chase Gulch	* Note: Exa Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA USEPA USEPA CDPHE CDPHE Phase II Phase II	Apr-89 6/19/89 9/19/89 9/19/89 9/19/89 9/19/89 9/19/89 9/19/89 9/19/89 9/19/89 10/25/95 6/19/89 9/18/89 7/22/94 3/21/95	0.810 0.050 0.5 0.186 - 0.310 * Stream represe	7.4 ? 7.6 6.98 7.60 7.65 7.68 7.68	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 Vjacent sample, 12.0 15.0 7.0 8.3	10.2 hatment da 22 4.3 11.0 14.6 7.51 6.77 6.92 326%5;67 750 3766 301 272	<5 ischarge W 60 557 ? 280 4209 1530 252 1790 1621 7/95 19000 5310 4743	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Lewis (1995) Lewis (1995)	HFHFHFHFUCHFFHFHFHFHFHFHFHFHFHFHFHFHFHFH
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46 SW-46 SW-46 NCC-SW-27 NCC-SW-27	Atershed Chase Guich Chase Guich	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA USEPA CDPHE CDPHE Phase II Phase II CDPHE CDPHE	Apr-89 6/19/89 9/19/89 9/19/89 92-94 7/26/94 10/25/95 4/11/97 6/2/97 11/19/01 5/21/02 6/19/89 9/18/89 7/22/94 3/21/95 3/21/95	0.810 0.050 0.5 0.186 - 0.310 * Stream repress 0.23 0.31	7.4 ? 7.6 6.98 7.60 7.65 7.68 ented by an ad 5.4 6.1	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 Ijacent sample, 12.0 15.0 7.0 8.3 4.0	10.2 hatment da 	<5 ischarge W 60 557 ? 5500 280 4209 1530 252 1790 1621 795 19000 5470 5310 4743 5620	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Lewis (1995) Bell (1999, App. B, T.49)	HFHFHFHFUCHFFHFHFUC
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46 SW-46 NCC-SW-27 SW-27	Atershed Chase Guich Chase Chase Cha	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA USEPA CDPHE CDPHE Phase II CDPHE	Apr-89 6/19/89 9/19/89 9/19/89 9/19/89 9/19/89 9/19/89 9/19/89 9/19/89 9/19/89 10/25/95 6/19/89 9/18/89 7/22/94 3/21/95	0.810 0.050 0.5 0.186 0.310 * Stream repress 0.23	7.4 ? 6.98 7.60 7.65 7.68 ented by an adj	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 Ijacent sample, 12.0 15.0 7.0 8.3 4.0 47.4	10.2 hatment da 	<5 ischarge W 60 557 ? 280 4209 1530 252 1790 1621 795 19000 5470 5310 4743 5620 8070	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995) Bell (1995) Bell (1995, App. B, T.49) Lewis (1995)	#### #JJ#J#
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46 SW-46 NCC-SW-27 SW-27 SW-27 SW-27 SW-26	Vatershed Chase Gulch Chase Gulch Gregory Incline Gregory Incline Gregory Incline Gregory Incline Gregory Incline Gregory Incline	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA USEPA CDPHE CDPHE Phase II Phase II CDPHE CDPHE	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 92-94 7/26/94 10/25/95 4/11/97 6/297 11/19/01 5/21/02 6/19/89 9/18/89 9/18/89 9/18/89 9/18/89 9/12/94 3/21/95 6/7/95	0.810 0.050 0.5 0.186 - 0.310 * Stream repress 0.23 0.31	7.4 ? 7.6 6.98 7.60 7.65 7.68 ented by an ad 5.4 6.1	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 tjacent sample, 12.0 15.0 7.0 8.3 4.0 47.4 44	10.2 hatment da 	<5 ischarge W 60 557 ? 5500 4209 1530 252 1790 1621 795 19000 5470 5310 4743 5620 8070 8334	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Lewis (1995) Bell (1995, App. B, T.49) Lewis (1995) Bell (1999, App. B, T.54)	*****
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46 SW-46 NCC-SW-27 NCC-SW-27 SW-27 SW-27 SW-27 SW-26 SW-46 SW-46	Vatershed Chase Guich Chase Guich Gregory Incline Gregory Incline	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE USEPA USEPA	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 92-94 7/26/94 10/25/95 4/11/97 6/2/97 11/19/01 5/21/02 6/19/89 9/18/89 9/18/89 9/18/89 9/18/89 9/122/94 3/21/95 6/7/95 6/7/95	0.810 0.050 0.5 0.186 0.310 * Stream represe 0.23 0.31 119	7.4 ? 7.6 6.98 7.60 7.65 7.68 ented by an ad 5.4 6.1 6.5	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 Ijacent sample, 12.0 15.0 7.0 8.3 4.0 47.4	10.2 hatment da - 16.0 22 4.3 11.0 14.6 7.51 6.77 6.92 37695;679 376 301 272 3155 5579 5631	<5 ischarge W 60 557 ? 280 4209 1530 252 1790 1621 795 19000 5470 5310 4743 5310 4743 5620 8070 8334 8640	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995) Bell (1995) Bell (1995, App. B, T.49) Lewis (1995)	#### #JJ#J#
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46 SW-46 SW-46 NCC-SW-27 SW-27 SW-27 SW-27 SW-27 SW-27 SW-26 SW-46 SW-46 SW-46	Atershed Chase Guich Chase Gui	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA USEPA CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE USEPA USEPA USEPA	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 9/2-94 7/26/94 10/25/95 4/11/97 6/297 11/19/01 5/21/02 6/19/89 9/18/89 9/18/89 9/18/89 7/22/94 3/21/95 6/7/95 10/25/95 4/11/97 6/2/97	0.810 0.050 0.5 0.186 0.310 • Stream represe 0.23 0.31 119 0.543	7.4 ? 6.98 7.60 7.65 7.68 ented by an adj 5.4 6.1 6.5 4.02	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 12.0 15.0 7.0 8.3 4.0 47.4 44 27.0 15.2 16.5	10.2 batment da - 16.0 22 4.3 11.0 14.6 7.51 6.77 6.92 3768/95 675 301 272 315 5579 5631 2580 755 1096	<5 ischarge W 60 557 ? 280 4209 1530 252 1790 1621 7/95 19000 5310 4743 5620 8070 8334 8334 8334 8640 6580 7177	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Lewis (1995) Bell (1999, App. B, T.49) Lewis (1995) Bell (1999, App. B, T.54) Medine (1996) Bell (1999) Bell (1999)	FFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 NCC-SW-29 NCC-SW-27 SW-46 SW-46 SW-27 SW-27 SW-27 SW-27 SW-27 SW-27 SW-26 SW-46 SW-46 SW-46 NCC-SW-27	Atershed Chase Guich Chase Gui	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA CDPHE CDPHE CDPHE CDPHE CDPHE USEPA USEPA USEPA USEPA CDPHE	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 92-94 7/26/94 10/25/95 4/11/97 6/297 11/19/01 5/21/02 6/19/89 9/18/89 9/18/89 9/18/89 7/22/94 3/21/95 6/7/95 6/7/95 6/7/95 6/7/95 6/7/95 10/25/95 4/11/97 6/2/97 11/16/01	0.810 0.050 0.5 0.186 - 0.310 * Stream repress 0.23 0.31 119 0.543 0.223	7.4 ? 7.6 6.98 7.60 7.65 7.68 ented by an ad, 5.4 6.1 6.5 4.02 5.19 4.96	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 12.0 15.0 7.0 8.3 4.0 47.4 44 27.0 15.2 16.5 11.8	10.2 batment da 	<5 ischarge W 60 557 ? 280 4209 1530 252 1790 1621 795 19000 5310 4743 5620 8070 8334 8640 6580 7177 5650	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Lewis (1995) Bell (1999, App. B, T.49) Lewis (1995) Bell (1999, App. B, T.54) Medine (1996) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Lewis (2001b)	부분류 유리고북리도 부분분의 가부분
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46 SW-46 SW-46 NCC-SW-27 SW-27 SW-27 SW-27 SW-27 SW-27 SW-26 SW-46 SW-46 SW-46	Atershed Chase Guich Chase Gui	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA USEPA CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE USEPA USEPA USEPA	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 9/2-94 7/26/94 10/25/95 4/11/97 6/297 11/19/01 5/21/02 6/19/89 9/18/89 9/18/89 9/18/89 7/22/94 3/21/95 6/7/95 10/25/95 4/11/97 6/2/97	0.810 0.050 0.5 0.186 0.310 Stream represe 0.23 0.31 119 0.543	7.4 ? 7.6 6.98 7.60 7.65 7.68 ented by an ad, 5.4 6.1 6.5 4.02 5.19	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 12.0 15.0 7.0 8.3 4.0 47.4 44 27.0 15.2 16.5	10.2 batment da - 16.0 22 4.3 11.0 14.6 7.51 6.77 6.92 3768/95 675 301 272 315 5579 5631 2580 755 1096	<5 ischarge W 60 557 ? 280 4209 1530 252 1790 1621 795 19000 5310 4743 5620 8070 8334 8640 6580 7177 5650	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Lewis (1995) Bell (1999, App. B, T.49) Lewis (1995) Bell (1999, App. B, T.54) Medine (1996) Bell (1999) Bell (1999)	HERE RULERED REPORT
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46 SW-46 NCC-SW-27 SW-27 SW-27 SW-27 SW-46 SW-46 SW-46 SW-46 SW-46 NCC-SW-27 NCC-SW-27	Atershed Chase Guich Chase Gui	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA CDPHE CDPHE CDPHE CDPHE CDPHE USEPA USEPA USEPA USEPA USEPA	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 92-94 7/26/94 10/25/95 4/11/97 6/297 7/11/19/01 5/21/02 6/19/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/19/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 9/12/95 6/7/95 6/7/95 6/7/95 6/2/97 11/16/01 5/21/02	0.810 0.050 0.5 0.186 - 0.310 * Stream repress 0.23 0.31 119 0.543 0.223	7.4 ? 7.6 6.98 7.60 7.65 7.68 ented by an ad, 5.4 6.1 6.5 4.02 5.19 4.96	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 12.0 15.0 7.0 8.3 4.0 47.4 44 27.0 15.2 16.5 11.8	10.2 batment da 	<5 ischarge W 60 557 ? 280 4209 1530 252 1790 1621 795 19000 5310 4743 5620 8070 8334 8640 6580 7177 5650	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Lewis (1995) Bell (1999, App. B, T.49) Lewis (1995) Bell (1999, App. B, T.54) Medine (1996) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Lewis (2001b)	부분류 유리고북리도 부분분의 가부분
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 NCC-SW-29 NCC-SW-27 SW-46 SW-46 SW-27 SW-27 SW-27 SW-27 SW-27 SW-27 SW-26 SW-46 SW-46 SW-46 NCC-SW-27	Atershed Chase Guich Chase Gui	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE USEPA DPHE CDPHE	cel file from Ro. Apr-89 <u>6/19/89</u> <u>9/19/89</u> <u>9/19/89</u> <u>9/2-94</u> 7/26/94 10/25/95 <u>4/11/97</u> <u>6/297</u> 11/19/01 <u>5/21/02</u> <u>6/19/89</u> <u>9/18/89</u> <u>7/22/94</u> <u>3/21/95</u> <u>3/21/95</u> <u>3/21/95</u> <u>6/77/95</u> <u>6/77/95</u> <u>10/25/95</u> <u>4/11/97</u> <u>6/297</u> <u>11/16/01</u> <u>5/21/02</u> 1985	0.810 0.050 0.5 0.186 - 0.310 * Stream repress 0.23 0.31 119 0.543 0.223	7.4 ? 7.6 6.98 7.60 7.65 7.68 ented by an ad, 5.4 6.1 6.5 4.02 5.19 4.96	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 12.0 15.0 7.0 8.3 4.0 47.4 44 27.0 15.2 16.5 11.8	10.2 batment da 	<5 ischarge W 60 557 ? 280 4209 1530 252 1790 1621 795 19000 5310 4743 5620 8070 8334 8640 6580 7177 5650	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Lewis (1995) Bell (1999, App. B, T.49) Lewis (1995) Bell (1999, App. B, T.54) Medine (1996) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Lewis (2001b)	바라내 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 NCC-SW-27 SW-46 SW-46 NCC-SW-27 SW-27 SW-27 SW-27 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-47 SW-27 SW-27 SW-27 SW-27 SW-27 SW-27 SW-27 SW-27 SW-27	Atershed Chase Guich Chase Gui	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA CDPHE CDPHE CDPHE CDPHE CDPHE USEPA USEPA USEPA USEPA USEPA	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 9/2-94 7/26/94 10/25/95 4/11/97 6/2/97 11/19/01 5/21/02 6/19/89 9/18/89 7/22/94 3/21/95 6/7/95 10/25/95 4/11/97 6/2/97 11/16/01 5/21/02 1985 Feb-86	0.810 0.050 0.5 0.186 - 0.310 * Stream repress 0.23 0.31 119 0.543 0.223	7.4 ? 7.6 6.98 7.60 7.65 7.68 ented by an ad, 5.4 6.1 6.5 4.02 5.19 4.96	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 12.0 15.0 7.0 8.3 4.0 47.4 44 27.0 15.2 16.5 11.8	10.2 batment da 	<5 ischarge W 60 557 ? 280 4209 1530 252 1790 1621 795 19000 5310 4743 5620 8070 8334 8640 6580 7177 5650	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Lewis (1995) Bell (1999, App. B, T.49) Lewis (1995) Bell (1999, App. B, T.54) Medine (1996) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Lewis (2001b)	
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 NCC-SW-29 SW-46 SW-46 NCC-SW-27 NCC-SW-27 SW-27 SW-26 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-47 SW-46 SW-46 SW-46 SW-46 SW-46 SW-27 SW	Atershed Chase Guich Chase Gui	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA	cel file from Ro. Apr-89 <u>6/19/89</u> <u>9/19/89</u> <u>9/19/89</u> <u>9/2-94</u> 7/26/94 10/25/95 <u>4/11/97</u> <u>6/297</u> 11/19/01 <u>5/21/02</u> <u>6/19/89</u> <u>9/18/89</u> <u>7/22/94</u> <u>3/21/95</u> <u>3/21/95</u> <u>3/21/95</u> <u>6/77/95</u> <u>6/77/95</u> <u>10/25/95</u> <u>4/11/97</u> <u>6/297</u> <u>11/16/01</u> <u>5/21/02</u> 1985	0.810 0.050 0.5 0.186 - 0.310 * Stream repress 0.23 0.31 119 0.543 0.223	7.4 ? 7.6 6.98 7.60 7.65 7.68 anted by an adj 5.4 6.1 6.5 4.02 5.19 4.96 4.88	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 12.0 15.0 7.0 8.3 4.0 47.4 44 27.0 15.2 16.5 11.8 7.38	10.2 batment da - 16.0 22 4.3 11.0 14.6 7.51 6.77 6.92 3768/95 675 301 272 315 5579 5631 2580 755 1096 799 354	<5 ischarge W 60 557 ? 280 4209 1530 252 1790 1621 795. 19000 5310 4743 5620 8070 8334 8640 6580 7177 5650 4962	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995) Bell (1999, App. B, T.49) Lewis (1995) Bell (1999, App. B, T.54) Medine (1996) Bell (1999) Bell (1999) Lewis (2001b) Tt-RMC (2004a)	
NFCC Sub-M SS-15 SW-47 SW-47 SW-47 SW-47 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 NCC-SW-29 SW-46 SW-46 NCC-SW-27 SW-27 SW-27 SW-27 SW-46 SW-46 SW-46 NCC-SW-27 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-47 SW-27 SW-47 SW-27 SW-46 SW-46 SW-47 SW-27 SW-27 SW-27 SW-27 SW-46	Atershed Chase Guich Chase Gragory Incline Gregory Incline Guartz Hill Tunnel Quartz Hill Tunnel Quartz Hill Tunnel	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 92-94 7/26/94 10/25/95 4/11/97 6/297 11/19/01 5/21/02 6/19/89 9/18/89 9/18/89 9/18/89 9/18/89 9/18/89 7/22/94 3/21/95 6/7/95 10/25/95 4/11/97 6/2/97 11/16/01 5/21/02 1985 Feb-86 5-6/1986	0.810 0.050 0.5 0.186 0.310 * Stream represe 0.23 0.31 119 0.543 0.223 0.214	7.4 ? 7.6 6.98 7.60 7.65 7.68 anted by an adj 5.4 6.1 6.5 4.02 5.19 4.96 4.88	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 12.0 15.0 7.0 8.3 4.0 47.4 44 27.0 15.2 16.5 11.8	10.2 batment da 	<5 ischarge W 60 557 ? 280 4209 1530 252 1790 1621 7/95 19000 5310 4743 5620 8070 8334 8640 6580 7177 5650 4962	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995) Bell (1999, App. B, T.49) Lewis (1995) Bell (1999, App. B, T.54) Medine (1996) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Lewis (2001b) Tt-RMC (2004a)	
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46 SW-46 NCC-SW-27 SW-27 SW-27 SW-27 SW-27 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-40 SW-50	Atershed Chase Guich Chase Gragory Incline Gregory	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA USEPA CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE Phase I Phase I Phase II Phase II Phase II Phase II	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 9/2-94 7/26/94 10/25/95 4/11/97 6/2/97 11/19/01 5/21/02 6/19/89 9/18/89 7/22/94 3/21/95 6/7/95 10/25/95 4/11/97 6/2/97 11/16/01 5/21/02 1985 Feb-86 5-6/1986 6/15/89 6/15/89 6/20/89 9/18/89 9/18/89	0.810 0.050 0.5 0.186 0.310 • Stream repress 0.23 0.31 119 0.543 0.223 0.214 0.013 Q, 0.004	7.4 ? 7.6 6.98 7.60 7.65 7.68 ented by an adj 5.4 6.1 6.5 4.02 5.19 4.96 4.88	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 12.0 15.0 7.0 8.3 4.0 47.4 44 27.0 15.2 16.5 11.8 7.38	10.2 batment da - 16.0 22 4.3 11.0 14.6 7.51 6.77 6.92 3768/95 675 301 272 315 5579 5631 2580 755 1096 799 354	<5 ischarge W 60 557 5500 280 4209 1530 252 1790 1621 795 19000 5470 5310 4743 5620 8070 8334 8640 6580 4962 100000	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995) Bell (1999, App. B, T.49) Lewis (1995) Bell (1999, App. B, T.54) Medine (1996) Bell (1999) Bell (1999) Lewis (2001b) Tt-RMC (2004a)	
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 NCC-SW-29 SW-46 SW-46 NCC-SW-27 SW-27 SW-27 SW-27 SW-27 SW-26 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-47 SW-27 SW-27 SW-27 SW-27 SW-27 SW-27 SW-26 SW-47 SW-26 SW-26 SW-26 SW-27 SW-27 SW-27 SW-27 SW-27 SW-26 SW-26 SW-27	Atershed Chase Guich Chase Gragory Incline Gregory Incline Guartz Hill Tunnel Quartz Hill Tunnel Quartz Hill Tunnel Quartz Hill Tunnel Quartz Hill Tunnel	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA CDPHE CDPHE CDPHE CDPHE CDPHE USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA ISEPA USEPA USEPA USEPA USEPA USEPA ISEPA USE USEPA USE USEPA USE USEPA USE USEPA USE USEPA USE USEPA U	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 9/2-94 7/26/94 10/25/95 4/11/97 6/297 11/19/01 5/21/02 6/19/89 9/18/89 7/22/94 3/21/95 6/7/95 6/7/95 6/7/95 10/25/95 4/11/97 6/2/97 11/16/01 5/21/02 1985 Feb-86 5-6/1988 6/15/89 6/20/89 9/18/89 7/28/94	0.810 0.050 0.5 0.186 0.310 * Stream repress 0.23 0.31 119 0.543 0.223 0.214	7.4 ? 7.6 6.98 7.60 7.65 7.68 anted by an adj 5.4 6.1 6.5 4.02 5.19 4.96 4.88	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 15.0 7.0 8.3 4.0 47.4 44 27.0 15.2 16.5 11.8 7.38	10.2 atment da - 16.0 22 4.3 11.0 14.6 7.51 6.77 5.0 376 301 272 315 5579 5631 2580 755 1096 799 354 32000	<5 ischarge W 60 557 ? 5500 4209 1530 252 1790 1621 795 19000 5470 5310 4743 5620 8070 8334 8640 6580 7177 5650 4962 100000 111000	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995) Bell (1999, App. B, T.49) Lewis (1995) Bell (1999, App. B, T.54) Medine (1996) Bell (1999) Bell (1999) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Bell (1999), App. B, T.28)2X	אייר אייראייריאייריאייריאייריאייריאיירי
NFCC Sub-M SS-15 SW-47 SW-47 WQ-6 NCC-SW-29 SW-47 SW-47 SW-47 NCC-SW-29 NCC-SW-29 SW-46 SW-46 NCC-SW-27 SW-27 SW-27 SW-27 SW-27 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-46 SW-40 SW-50	Atershed Chase Guich Chase Gragory Incline Gregory	* Note: Exc Phase II R Phase II Phase II CCWDP CDPHE USEPA USEPA USEPA CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE CDPHE Phase I Phase I Phase II Phase II Phase II Phase II	cel file from Ro. Apr-89 6/19/89 9/19/89 9/19/89 9/2-94 7/26/94 10/25/95 4/11/97 6/2/97 11/19/01 5/21/02 6/19/89 9/18/89 7/22/94 3/21/95 6/7/95 10/25/95 4/11/97 6/2/97 11/16/01 5/21/02 1985 Feb-86 5-6/1986 6/15/89 6/15/89 6/20/89 9/18/89 9/18/89	0.810 0.050 0.5 0.186 0.310 • Stream repress 0.23 0.31 119 0.543 0.223 0.214 0.013 Q, 0.004	7.4 ? 7.6 6.98 7.60 7.65 7.68 ented by an adj 5.4 6.1 6.5 4.02 5.19 4.96 4.88	<2 D for post-tree 1.9 ? 12 0.9 15.6 5.2 1.15 5.11 4.79 15.0 7.0 8.3 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	10.2 batment da - 16.0 22 4.3 11.0 14.6 7.51 6.77 6.92 37695;67 376 301 2722 315 5579 5631 2580 755 1096 799 354 32000 51900	<5 ischarge W 60 557 ? 5500 4209 1530 252 1790 1621 795 19000 5470 5310 4743 5620 8070 8334 8640 6580 7177 5650 4962 100000 111000 138000	USEPA data trans., 4/4 (Q is available (1/27/05). Lewis (1995); Bell (1999) Lewis (1995); Bell (1999) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999, App. B, T.32) Lewis (1995) Bell (1999, App. B) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Lewis (1995) Bell (1999, App. B, T.49) Lewis (1995) Bell (1999, App. B, T.54) Medine (1996) Bell (1999) Bell (1999) Bell (1999) Bell (1999) Lewis (2001b) Tt-RMC (2004a) Lewis (1995); Bell (1999) Bell (1999, App. B, T.28)2X Lewis (1995); Bell (1999)	אין

Selected Water-Quality Characteristics, Mine-Impacted Source Areas

Sources: Bell (1999, Tables 14, 16, 17, and 20); J. Herron, written commun., 1/21/05; RMC (2002, Table 2.3-2) Lewis (1995; 2001a; 2001b); Medine (1996); Tt-RMC (2004a, Appendix A). BDL/U = below detection limit. ID Description Source Date Flow, cfs pH D-Cd, ug/L D-Cu, ug/L D-Zn, ug/L Source/Notes NCC-SW-23 Quartz Hill Tunnel CDPHF 3/22/95 0.01 3.0 620 42400 140000 Lewis (1995) 1 F NCC-SW-23 Quartz Hill Tunnel CDPHE 6/8/95 0.18 2.4 316 57520 51244 Lewis (1995) HF NCC-SW-23 Quartz Hill Tunnel CDPHE 11/19/01 872 42200 156000 Lewis (2001b) LF SW-014 Gregory Gulch Phase I 7/18/85 48 38 7360 Bell (1999, App. B) HP SW-014 Gregory Gulch Phase I Feb-86 LF SW-014 Gregory Gulch Phase I 5/20/86 104 1526 16500 Bell (1999, App, B) HF SW-014 Gregory Gulch Phsl Addm Apr-87 LF SS-32 Gregory Gulch Phase II RI Apr-89 5.6 -1700 LF SS-88 Gregory Gulch Phase II RI Apr-89 5.1 ---2150 1 F SE-44 Gregory Gulch Phase II 6/12/89 0.400 *Q. 6/19? 12 5 25 0 500 Lewis (1995); Bell (1999) HF SE-44 Gregory Gulch Phase II 8/11/89 0.044 *Q, 9/18/? 710 2210 89900 Lewis (1995); Bell (1999) HF Gregory Gulch 8/11/89 715 2326 95150 Bell (1999, App. B, T.28) HF NCC-SW-20 Gregory Gulch CDPHE 7/22/94 0.02 4.0 37.0 1180 5790 Lewis (1995) HF NCC-SW-20 Gregory Gulch CDPHE 3/21/95 0.27 6.1 478 895 4975 Lewis (1995) LF SW-20 Gregory Gulch 3/21/95 53 911 6035 Bell (1999, App. B, T.49) LF NCC-SW-20 CDPHE Gregory Gulch 6/7/95 11 3.8 84.0 1987 13006 Lewis (1995) HF SW-20 Gregory Gulch 6/7/95 92 2091 14414 Bell (1999, App. B, T.54) HE SW-44 Gregory Gulch USEPA 10/25/95 0.017 26390 Bell (1999, App. B) 3 37 168 4720 LF SW-44 Gregory Gulch USEPA 4/11/97 0.446 7 25 13.3 51.0 1490 Bell (1999) LF SW-44 Gregory Gulch USEPA 6/2/97 ---4.29 64.2 1256 10149 Bell (1999, App. B) HF NCC-SW-20 Gregory Gulch CDPHE 11/16/01 17.9 392 3060 Lewis (2001b) LF NCC-SW-20 Gregory Gulch CDPHE 0.029 5/21/02 5.49 229 856 3780 Tt-RMC (2004a) HF SW-007 National Tunnel Phase I 7/18/85 15 352 14000 Bell (1999, App. B) HF SW-008 National Tunnel 10/31/85 10 16 11580 Bell (1999, App. B) LF SW-007 National Tunnel Phase I 2/19/86 9 118 13100 Bell (1999, App. B) LF SW-007 National Tunnel 5-6/1986 Phase I HF SW-007 National Tunnel Apr-87 Phsl Addm LF SW-41 National Tunnel Phase II 6/20/89 0.045 12.5 110 5700 Lewis (1995); Bell (1999) HF National Tunnel 6/20/89 Bell (1999, App. B, T. 28) 2X SW-41 National Tunnel Phase II 9/18/89 0.054 17 0 77.0 7760 Lewis (1995); Bell (1999) HF NCC-SW-17 National Tunnel CDPHE 7/26/94 0 07 63 4.9 39.4 5860 Lewis (1995) HF NCC-SW-17 National Tunnel CDPHE 3/21/95 0.12 6.6 35 11 4990 Lewis (1995) LF SW-17 National Tunnel 3/21/95 5339 Bell (1999, App. B, Table 4 LF 35 73 NCC-SW-17 National Tunnel CDPHE 6/7/95 0.15 32 98.0 11487 29455 Lewis (1995) HF SW-17 National Tunnel 6/7/95 Bell (1999, App. B, T. 54)2X SW-41 National Tunnel USEPA 10/25/95 0.159 5.39 10.2 442 8120 Medine (1996) LF SW-41 National Tunnel USEPA 4/11/97 0.089 6 51 5.1 30.7 6420 Bell (1999) LF SW-41 National Tunnel USEPA 6/2/97 6.37 10.9 137 8302 Bell (1999) -HF NCC-SW-17 National Tunnel CDPHE 11/14/01 6.33 79.5 7340 Lewis (2001b) LF NCC-SW-17 National Tunnel CDPHE 0 072 5/21/02 6 61 4.72 55.8 6532 Tt-RMC (2004a) HF NCC-SW-13 East Williams Adit CDPHF 7/26/94 0.005 7.3 2.2 U 932 Lewis (1995) HF NCC-SW-13 East Williams Adit CDPHF 3/26/95? 0.006 6.6 24 69 2346 Lewis (1995)[convertQ?] LF NCC-SW-13 Fast Williams Adit CDPHF 6/7/95? 0.668 7.3 4.1 66 932 Lewis (1995)[convertQ?] HF NCC-SW-13 East Williams Adit CDPHE 11/4/01 0.71 <4 236 Lewis (2001b) LF NCC-SW-13 East Williams Adit CDPHE 5/21/02 0.009 7.40 0.84 <3 399 Tt-RMC (2004a) HF SW-04 Russell Gulch Phase I 10/30/85 1340 Bell (1999, App. B) 6 24 IF SS-04 Russell Gulch[®] Phase II RI Apr-89 0.02 7.2 900 IF SW-38 Russell Gulch Phase II 6/19/89 0.067 HF NCC-SW-7 **Russell Gulch** CDPHE 3/26/95? 0.37 6.8 4.5 10 1220 Lewis (1995) LF NCC-SW-7 Russell Gulch CDPHE 6/7/95? 25 4.2 43.9 1856 6565 Lewis (1995) HF SW-38 Russell Gulch USEPA 10/25/95 0.219 6.88 10.6 100 2230 Bell (1999) LF SW-38 Russell Gulch USEPA 4/11/97 1.52 7.43 3.6 30.2 952 Bell (1999) LE SW-38 Russell Gulch USEPA 6/2/97 4.86 31.3 1054 6143 Bell (1999) HF NCC-SW-7 Russell Gulch CDPHE 11/14/01 Lewis (2001b) LF NCC-SW-7 Russell Gulch CDPHE 5/21/02 0.023 7.53 0.84 291 Tt-RMC (2004a) 6.08 HF

* Site was dry, 9/19/89; 7/12/94

Selected Water-Quality Characteristics, Wastewater Treatment Facilities

0		
Sources:	Lewis (2002b); BHCCSD (Lynn Venters, 1/13/05); TDS Consulting Inc. (2002)	

ID	Description		verners, 1						
	Clear Creek Sub-Water	Source	Date	Flow, gpm	pH D-0	Cd, ug/L.D-	Cu, ug/L D-	Zn, ug/L	Source/Notes
CC-15a	Eisenhower CDOT		0/40/00						
00-158	Eisennower CDO1	USEPA	8/12/02			<1	<5	11.0	TDS (2002)
00.4-									
CC-1a	Loveland Ski Area	USEPA	8/12/02			<1	9.8	20.0	TDS (2002)
	120								
CC-3a	Georgetown	USEPA	8/12/02			<1	<5	22.2	TDS (2002)
CC-14a	Henderson WWTP	ACZ Labs	8/21/02			0.2	5	60	TL (PD, 6/26/02)
						0.1	0	00	12 (1 0, 02002)
SW-20G	CCCSD-WWTP	CDPHE	11/6/01			<0.2	22.9	46.8	Lewis (2002b)
CC-7a	Central Clear Creek	USEPA	8/12/02			<1	20.5		
			0.12.02			~1	20.5	57.1	TDS (2002)
CC-8a	St. Mary's	USEPA	8/12/02			-1	24.0	00.0	TOO (COAC)
	or mary o	OOLIA	0/12/02			<1	24.9	20.3	TDS (2002)
CC-12a	Idaho Springs	USEPA	8/12/02						
00124	idano opiniga	USEFA	0/12/02			<1	5.7	61.7	TDS (2002)
NFCC Sub-	Matarahad								
					0.554				
SS-09	BHSTP	Phase II R	Apr-89		6.6	(***)		1200	
SW-15A	BH/CC POTW		3/21/95			<6	66	345	Bell (1999, App. B, Tabl
SW-15A	POTW Outfall		6/7/95			19	180	3406	Bell (1999, App. B, Tabl
NCC-SW-1		CDPHE	11/4/01		?	?	?		Lewis (2002b)
NCC-SW-1	5A BH/CCSD-WWTP	CDPHE	5/21/02	0.579	7.27	<0.2	7.7	101.7	Tt-RMC (2004a)
CC-13a	Black Hawk/CC	USEPA	8/12/02			<1	7.1		TDS (2002)
CC-13a	BHCCSD-WWTP	BHCCSD	11/20/00		the classic sector s	<5	11		
CC-13a	BHCCSD-WWTP	BHCCSD	12/6/00		6.95	-0	11		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	1/3/01		0.55	<5			Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	2/2/01				10		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD			7.15	<5	8		Lynn Venters (1/13/05
CC-13a			2/7/01		7.45	<5	8		Lynn Venters (1/13/05
	BHCCSD-WWTP	BHCCSD	2/8/01				8	90	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	3/2/01			<5	<5	93	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	3/6/01				<5	100	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	3/7/01			<5	<10	88	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	4/3/01			<5	<7		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	4/4/01			<5	<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	4/11/01				<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	5/1/01			<5	<25		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	5/2/01		6.98	<5	<10		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	5/9/01				<25		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	6/4/01			<5	<22		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	6/6/01			<5	12		
CC-13a	BHCCSD-WWTP	BHCCSD	6/12/01			-5			Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	7/2/01			-5	10	100	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	7/5/01		7.00	<5	14	120	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD			7.00	<5	<25	110	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP		7/10/01				13		Lynn Venters (1/13/05
CC-13a		BHCCSD	8/1/01		7.01	<5	11	89	Lynn Venters (1/13/05
	BHCCSD-WWTP	BHCCSD	8/1/01			<5	11	93	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	8/7/01				11	93	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	9/4/01			<5	10	100	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	9/12/01				9	100	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	10/3/01			<5	12		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	10/8/01			<5	<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	10/10/01				<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	11/1/01			<5	<25		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	11/7/01		7.38	<5	<25		
CC-13a	BHCCSD-WWTP	BHCCSD	11/9/01		1.00	10			Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	12/3/01			-5	17		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	12/5/01		6 77	<5	7		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP				6.77	<5	<25		Lynn Venters (1/13/05
CC-13a	the second state of the se	BHCCSD	12/11/01				<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	1/4/02			<5	7		Lynn Venters (1/13/05
	BHCCSD-WWTP	BHCCSD	1/8/02				6		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	1/13/02				17		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	1/14/02			<1	17	81	Lynn Venters (1/13/05
									un (131)

TDS Project No. 0405-3/4

Selected Water-Quality Characteristics, Wastewater Treatment Facilities

Sources: Lewis (2002b); BHCCSD (Lynn Venters, 1/13/05); TDS Consulting Inc. (2002)

Sources:	Lewis (2002b); BH	CCSD (Lynn	Venters, 1	/13/05); TDS	Consultin	g Inc.	(2002)				
ID	Description	Source	Date	Flow, gpm	pН	D-Cd,	ug/LD-Cu,	ug/L	D-Zn. ua/L	Source/Notes	
CC-13a	BHCCSD-WWTP	BHCCSD	1/15/02				<5	<25	the second se	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	2/5/02				<5	9		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	2/6/02				<5	<25		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	2/11/02					7.4		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	3/1/02				<5	<25	84	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	3/6/02				<5	<5	04	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	3/7/02				-5			Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	4/2/02					5.8		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD			7 07		<5	<5	79	Lynn Venters (1/13/0	5
CC-13a			4/10/02		7.27		<5	<5		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	4/12/02					9		Lynn Venters (1/13/0	
	BHCCSD-WWTP	BHCCSD	4/26/02				<5	15		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	5/1/02				<5	<5		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	5/3/02				<5	7	92	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	5/5/02					<5	88	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	6/5/02		6.87		<5	<5	91	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	6/7/02				<5	14	110	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	6/12/02					17		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	7/1/02				6	<5		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	7/3/02				16	9		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	7/8/02					8		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	7/17/02				<5	<5	87	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	8/5/02				<5	<5		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	8/7/02		6.72		<5	<5		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	8/12/02		Grif he		-0	<5	02	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	9/4/02				<5	<5		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	9/8/02				<5	7			
CC-13a	BHCCSD-WWTP	BHCCSD	9/13/02				-5			Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	10/2/02		7.04		-5	<5		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD			7.21		<5	9		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP		10/4/02				<5	9		Lynn Venters (1/13/05	
CC-13a		BHCCSD	10/9/02				-	18	130	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	10/17/02				<5	10		Lynn Venters (1/13/0	
	BHCCSD-WWTP	BHCCSD	11/1/02				<5	15		Lynn Venters (1/13/08	
CC-13a	BHCCSD-WWTP	BHCCSD	11/6/02		7.01		<5	6	130	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	11/8/02					<5	140	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	12/2/02				<5	5	100	Lynn Venters (1/13/08	5
CC-13a	BHCCSD-WWTP	BHCCSD	12/4/02		7.11		<5	<5	100	Lynn Venters (1/13/08	5
CC-13a	BHCCSD-WWTP	BHCCSD	12/13/02				<5	<5		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	1/3/03				<5	5	90	Lynn Venters (1/13/0	5
CC-13a	BHCCSD-WWTP	BHCCSD	1/8/03		6.97		<5	<5	93	Lynn Venters (1/13/05	5
CC-13a	BHCCSD-WWTP	BHCCSD	1/27/03				<5	10		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	2/5/03		6.81		<5	9	Contraction of Contraction	Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	2/10/03				<5	<6		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	2/14/03					<5		Lynn Venters (1/13/0	
CC-13a	BHCCSD-WWTP	BHCCSD	3/5/03		7.04		<5	<5		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	4/2/03		7.33		<5	<5		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	4/4/03				<5	<5	140	Lynn Venters (1/13/05	5
CC-13a	BHCCSD-WWTP	BHCCSD	4/14/03					8		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	5/7/03		6.86		<5	10		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	5/12/03		0.00		-5	10			
CC-13a	BHCCSD-WWTP	BHCCSD	6/2/03				<5			Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	6/4/03					8		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD					<5	<5		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	6/11/03		0.00		~~	5		Lynn Venters (1/13/05	
CC-13a			7/2/03		6.96		29	11		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP BHCCSD-WWTP	BHCCSD	7/16/03				-	12		Lynn Venters (1/13/05	
		BHCCSD	7/23/03				<5	10		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	8/4/03		1.000		<5	7		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	9/3/03		6.98		<5	<5		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	9/5/03				<5	7	110	Lynn Venters (1/13/05	5
CC-13a	BHCCSD-WWTP	BHCCSD	9/9/03				<5	8	99	Lynn Venters (1/13/05	5
CC-13a	BHCCSD-WWTP	BHCCSD	10/1/03		7.01		<5	6	5	Lynn Venters (1/13/05	5
CC-13a	BHCCSD-WWTP	BHCCSD	10/6/03				<5	<5		Lynn Venters (1/13/05	
CC-13a	BHCCSD-WWTP	BHCCSD	10/15/03				<5	7		Lynn Venters (1/13/05	
										enterente interestation formationalis	

.

Selected Water-Quality Characteristics, Wastewater Treatment Facilities

Sources: Lewis (2002b); BHCCSD (Lynn Venters, 1/13/05); TDS Consulting Inc. (2002)

000/0003.	20020, 011	CCOD (Lynn	veniers, 1/15/05), 105	Consular	ig Inc. (2002)			
ID	Description	Source	Date Flow, gpm	pН	D-Cd, ug/L D-Cu,	ug/LD-Zn,	ug/L	Source/Notes
CC-13a	BHCCSD-WWTP	BHCCSD	10/17/03		<5	7	81	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	11/5/03		<5	<5	83	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	11/7/03		<5	6		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	11/9/03		<5	5	95	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	12/1/03		<5	5	82	Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	12/3/03	7.20	<5	8		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	12/9/03		<5	<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	1/5/04		<5	<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	1/7/04	7.05	<5	7		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	1/9/04		<5	15		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	1/14/04		<5	5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	2/2/04		<5	<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	2/4/04	6.91	<5	<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	2/9/04		<5	9		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	2/29/04		<5	7		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	3/3/04	7.48	<5	8		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	4/7/04	7.01	<5	6		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	4/12/04		<5	5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	5/3/04		<5	11		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	5/4/04	6.93	<5	13		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	5/21/04		<5	7		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	6/2/04	6.82	<5	<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	6/3/04		<5	8		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	6/7/04		<5	7		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	6/9/04		<5	8		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	6/16/04		<5	6		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	7/2/04		<5	6		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	7/7/04	6.57	<5	12		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	7/9/04		<5	7		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	8/4/04	6.83	<5	13		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	8/6/04		<5	13		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	8/9/04		<5	10		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	9/1/04	7.80	<5	<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	9/3/04		<5	<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	9/8/04		<5	<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	10/1/04		<5	6		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	10/6/04		<5	8		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	10/11/04		<5	6		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	10/13/04		<5	5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	10/31/04		<5	7		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	11/3/04	7.27	<5	7		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	12/1/04	7.21	<5	<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	12/3/04		<5	<5		Lynn Venters (1/13/05
CC-13a	BHCCSD-WWTP	BHCCSD	12/8/04		<5	<5		Lynn Venters (1/13/05

Upper Clear Creek Watershed Plan

Visciphic:	On ofe	Concentrations, mg/L:	ns, mg/L:	Concentratic	Concentrations, mg/L: Concentrations, mg/L:		ns, mg/L:	Concentration, mg/L:	n, mg/L:
Average	0.51	0.15	ET CO CONC 0.00025	101 CU CONC	ET CU CONC		Eff Zh Conc lint Hard	Int Hard	Eff Hard
# Values	342	43	330	44	333	47	331	7	318
		Inf Cd Load	Inf Cd Load Inf Cu Load Inf Zn Load	Inf Zn Load			Eff Cd Load	Eff Cu Load	Fff Zn Load
Average Value	Ibs/dl	0.51	17.0	162	Average Value	lps/d	0.00080		
# Values		43	44	47	# Values		330	333	331
Avg Q,gpm	230	-							
Source: Excel file named ArgoQsWQ(TDSrev)	le named Ar	goQsWQ(TDS	srev)		Percent Reduction (remain): (in TMs loads)	tion (remain):	0.16% 99.84%	0.11%	0.04%
Receiving-Water (mainstem Clear Creek), ambient conditions (Appendix Table C-1):	Water (n	nainstem	Clear Cre	sek), amł	pient condi	itions (Ap	pendix T	able C-1)	
00-00	FIOW	# 17-0	D-CU #	20	00-40	FIOW	# uz-a	D-Cu #	
Pre-Argo	240	8847	463		Pre-Argo	248	10927	484	
#months	42	42	42		#months	42	42	42	
Pre-Argo, Ibs/d		295	15.4		Pre-Argo, Ibs/d		364	16.1	
Post-Argo	183	5112	198		Post-Argo	180	5602	263	
#months	78	-	78		#months	78	78	78	
Post-Argo, Ibs/d		170	6.60		Post-Argo, Ibs/d	p	187	8.75	
Pre- vs. Post-	16%				Pre- vs. Post-	73%			
Check Loadings (use these values)	(use these v	values):			Check Loadings (use these values):	s (use these v	alues):		
Pre-Argo	Load sum	371571	19463		Pre-Argo	Load sum	458951	20343	
#days (1278), lbs/d	s/d	291	15.2		#days (1278), lbs/d	p/sq	359	15.9	
Post-Argo	Load sum	398712	15441		Post-Argo	Load sum	436980	20481	
#days (2375), lbs/d	s/d	168	6.50		#days (2375), lbs/d	p/sq	184	8.62	
Pre- vs. Post- CC-60		58%	43%		Pre- vs. Post- CC-40		51%	54%	
Difference in TMs loads:	Is loads:	-123	-8.73		Difference in TMs loads:	Ms loads:	-175	-7.29	
Reduction in Argo TMs:	to TMS:	-161.8	-16.94		Reduction in Argo TMs:	go TMS:	-161.8	-16.94	
Alata This and all		In the second second second						and the second s	

Note: This evaluation confirms that loads reductions cannot be assumed conservatively; that is, effects/contributions of other TMs sources need to be considered.

Project No. 0405-5

6/23/05

Past, Ongoing, and Future Mine-Cleanup Sites

A. Compl	eted		
WAG ID	Site Name	Stream Location	Notes:
1	Urad	WFCC	
2	Lion Creek	WFCC	
3	McClelland pile	mainstem CC	see McClelland (34) & Rockford (35) drainages
4	Black Eagle Mill Tailings	Chicago Creek	see medicialia (34) a Rockford (35) dialilages
5	Little Bear pile	Soda Creek	near Idaho Springs; USFS land
6	Argo Tunnel water treatment	mainstem CC	see separate detailed TDS assessment
7	Argo tailings pipe	mainstem CC	Rosa Gulch runoff
8	Golden Gilpin tailings	NFCC	
9	Chase Gulch #1	NFCC	partly completed; see 22 below
10a	Gregory Incline tailings		see Chase Gulch #2 (21)
10b	Gregory Incline collection pipe/blowout	NFCC NFCC	
11a	Gregory Gulch #1 tailings (Eureka)	NFCC	
11b	Gregory Gulch #1 tailings (Central City)	NFCC	
11c	Gregory Gulch #1 tailings (Gold Rush)		
12a		NFCC	
12b	Gregory Gulch #2 tailings (Prometheus) Gregory Gulch #2 tailings (Viento Vista)	NFCC	
13a	National Tunnel waste rock	NFCC	051
13b		NFCC	see 25 below
130	National Tunnel collection pipe/blowout	NFCC	see 25 below
	Clay County tailings	NFCC	
15	North Clear Creek tailings	NFCC	
16 17a	Boodle Mill tailings	NFCC	
178	Big Five tailings	mainstem CC	
B. Superf	und-Listed (RODs), pending clean-up [upd	ate with OUA PODI	
17b	Big Five Tunnel	mainstem CC	passive-treatment experiment ended
18	Burleigh Tunnel	mainstem CC	passive-treatment failed (Tt investigation?)
19	Virginia Canyon groundwater	mainstem CC	CDPHE-HMWMD current project (AMEC)
20	Argo tailings	mainstem CC	Doug Jamison (CDPHE-HMWMD), check status
21	Chase Gulch #2	NFCC	see Chase Gulch #1, see 9 above; OU4 ROD
22	Golden Gilpin tailings	NFCC	
23	Gregory Incline water treatment	NFCC	remainder to be completed; see 8 above
24a	Quartz Hill tailings	NFCC	OU4 ROD
24b	Quartz Hill water treatment	NFCC	
25	National Tunnel water treatment	NFCC	see 13a/13b above
C. Project	ts not included for Superfund remediation	(pending consideration	on)
26	Diamond Mine drainage	mainstem CC	Silver Plume area; proximity of Burleigh Tunnel
27	Waldorf Mine tailings	SFCC	
28	North Empire waste-rock pile	WFCC	
29	Aorta Mine drainage	WFCC	
30	Empire tailings	WFCC	
31	Joe Reynolds tailings	Silver Creek	upper Fall River (CDMG, see Alice Glory Hole (category I
32	Elida tailings	mainstem CC	on/along Spring Gulch
33	Red Elephant	mainstem CC	0, 0
34	McClelland drainage	mainstem CC	see 3 above
35	Rockford drainage	mainstem CC	passive-treatment failed; link to McClelland?
36	Trail Creek tailings	Trail Creek	CDPHE-WQCD SS 9b (new); need monitoring data
37	Donna Juanita tailings	mainstem CC	, , , , , , , , , , , , , , , , , , ,
38	Alma Lincoln tailings	mainstem CC	
39	Two Brothers	Virginia Canyon	historical
40	Waste-rock piles, including Little Six	Virginia Canyon	see CWT (2003); Herron and others (2001)
41	Franklin	Gilson Gulch	historical
42	Nevadaville tailings	NFCC	above Gregory Gulch; OU4?
43	Gregory Gulch #3 tailings	NFCC	OU4?
44	North Clear Creek dredge site	NFCC	OU4?
45	North Clear Creek in-stream sediments	NFCC	OU4?
D Other	(res WAC)		
D. Ouler	(non-WAG) Alice Glass Hole		[add as needed]
	Alice Glory Hole Minnesota Mine tailings		CDMG (Jim Herron); RL (partial remediation)
	that to both mine tanings		Check post-project (why not category A?) [RL]

Source: UCC-WAG (2001, Table 17) [possibly needs updating]

TDS Project No. 0405-5

D)

Marce Description beside Part Faile Description (15) Part (15) Part (16) Part (16) Part (16) <th></th> <th></th> <th></th> <th></th> <th></th> <th>ום בי ירמייים</th> <th></th> <th></th> <th>1</th> <th></th> <th></th>						ום בי ירמייים			1		
IDSOR Fank IDSOR FCC OU13 FCC	source	D-Ca F080		D-Cu Load		D-Zn Load		Notes/Cr	oss-Referer	lces	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lescription	p/sqi	Kank	p/sqi	Rank	p/sqi	Rank	0011	Table 2-1	Appendix I	SOU4 ROD
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.000	V 7	D.N.	- (14.4	N	NFCC	002,3		004
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Inia Canyon Groundwater	0.050	- (1.81	∾ '	15.5	1	8	OU3-NPS	WAG #1	DIMWIMD
0.026 1 1 5 5 NFCC 0.013 3 0.004 12 0.01 7 2.2 10 NFCC 0013 3 0.003 15 0.013 5 0.115 1 NFCC 0013 3 0.003 15 0.003 15 1.6 11 NFCC 0013 3 0.003 17 10.3 13 0.012 13 NFCC 0013 12 12 12 14 12 NFCC 0013 13 11.1 14 12 NFCC 0013 11 11 14 12 NFCC 0013 11 12 <td></td> <td>0.033</td> <td>N</td> <td>0.0</td> <td>4 (</td> <td>3.9</td> <td>7</td> <td>NFCC</td> <td>OU-3 (1/2</td> <td>(;</td> <td>004</td>		0.033	N	0.0	4 (3.9	7	NFCC	OU-3 (1/2	(;	004
0.000 17 0.001 7 4.2 0 NFCC 0.001333 5 1.6 1.7 NFCC 0.001333 5 0.00133 5 0.00133 5 0.00133 5 0.00133 5 0.00133 5 0.00133 5 0.00133 5 0.00133 5 0.00133 5 0.00133 1.6 1.7 N FECC 0.00133 1.1 1.4 1.2 N FECC 0.0133 1.1 1.4 1.2 1.1 1.4	International Transfer	920.0	ο,	9.1	1 00	0.0 7	n n	NFCC	OU1,3 (2)		
0.000 17 0.000 17 0.000 17 0.000 17 0.001 0.011	Green Gulch area	1000	1 0			4 C	0	NFCC	001,3 (2)		004
0.002 1 0.005 1 0.012 1 0.013 15 0.003 15 0.013 15 0.013 15 0.013 15 0.013 15 0.013 17 11 12 13 15 0.013 17 11.1 12 13 15 0.013 17 11.1 12 13 0.013 17 11.1 12 13 0.013 17 11.1 12 13 0.013 0.013 0.013 17 11.1 12 13 0.013 0.013 11.1 12 13 0.013	Silver Guich reach		50	0.000	2 4	2 2	2 7	NECC	500	VAG #2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(old) WW/TP area	0000	4 4	0.00	0 0	0, r	2 0		202	2# 0 VAV	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1000	1 4	0.00	b U	- 0	D 7		202	7# 04AA	
0.010 9 -0.03 70 12.1 3 CC 0.03 0.005 17 0.03 17 1.2 1.3 CC 003 0.005 17 0.03 17 1.2 1.3 CC 003 0.005 17 0.035 12 1.4 12 3 CC 003 0.002 17 0.004 16 1.4 12 NECC 003 0.002 17 0.004 17 0.04 21 1.4 12 NECC 003 0.002 17 0.004 17 0.014 10 0.3 18 NECC 003 0.001 17 0.004 14 1.0 1.4 CC 003 0.001 17 0.004 17 1.17 4 NECC 003 0.001 14 1.0 1.17 4 NECC 003 0.0010 21 0.012	se Guich	0.000	2α	0100	0 4	7 0	2 0	NECC	001,00		
0.005 17 0.04 17 1.4 12 NFCC 0.03 0.005 13 0.003 17 1.4 12 13 CC 0.03 0.005 13 0.003 17 1.4 12 1.5 CC 0.03 0.002 17 0.003 12 -14.4 25 0.03 CC 0.03 0.002 17 0.011 23 -5.5 23 -5.5 CC 0.03 0.001 17 0.043 10 0.3 18 NFCC 0.03 0.003 19 0.044 10 0.3 18 NFCC 0.03 0.003 19 0.044 10 0.3 18 NFCC 0.03 0.003 19 0.004 14 0.6 6.6 0.03 0.03 0.003 19 0.004 174 0.0 0.0 16 NFCC 0.03 0.010 <t< td=""><td>S. McClelland Tunnel area</td><td>0.010</td><td>0</td><td>-0.03</td><td>200</td><td>10.1</td><td>0 0</td><td></td><td>211) 0-00</td><td></td><td></td></t<>	S. McClelland Tunnel area	0.010	0	-0.03	200	10.1	0 0		211) 0-00		
0.005 13 0.003 17 1.2 13 0.03 17 12 13 0.03 0.002 16 0.035 12 14.0 25 NFCC 0.03 0.002 17 0.0035 12 14.0 25 NFCC 0.03 0.002 17 0.006 15 0.12 19 NFCC 0.03 0.001 17 10.1 14 NFCC 0.03 10 0.3 14 NFCC 0.03 0.000 20 0.01 14 1.0 14 NFCC 0.03 0.000 20 0.01 14 1.0 14 NFCC 0.03 0.000 20 0.01 14 1.0 14 NFCC 0.03 0.000 21 10 0.2 11 14 NFCC 0.03 0.001 22 -0.02 22 -4.6 22 NFCC 0.03 0	sell Gulch	0.006	11	0.04	11	14	10	NECC			VI IC
0.002 1/5 0.004 8 0.4 1/5 0.0 </td <td>Ielland Tunnel</td> <td>0.005</td> <td></td> <td>2000</td> <td></td> <td>i c</td> <td>4 6</td> <td></td> <td>200</td> <td></td> <td>100</td>	Ielland Tunnel	0.005		2000		i c	4 6		200		100
-0.029 24 0.035 72 -14.0 25 NFCC 0.03 0.021 7 0.006 15 0.2 19 NFCC 0.03 0.021 7 0.006 15 0.2 19 NFCC 0.03 0.021 7 0.044 21 11.7 4 NFCC 0.03 0.0006 18 0.044 10 0.3 14 10 14 10 14 0.0003 19 -0.0004 18 0.6 16 NFCC 0.03 0.0004 18 0.6 16 16 0.6 0.03 0.03 0.0010 22 -1.45 25 2.1 NFCC 0.03 0.0022 145 27 0.6 0.03 20 0.03 20 0.03 0.010 22 -1.45 25 17 NFCC 0.03 11 11 11 11 11 11 <t< td=""><td>kford Tunnel</td><td>0000</td><td>0 4</td><td></td><td>2α</td><td>7 F</td><td>17</td><td></td><td>200</td><td></td><td></td></t<>	kford Tunnel	0000	0 4		2α	7 F	17		200		
0.000 7 0.004 7 0.005 7 0.003 </td <td>Russell Gulch area</td> <td>-0.020</td> <td>PC</td> <td>0.025</td> <td>с с</td> <td>1.0</td> <td>ac ac</td> <td>NECO</td> <td>200</td> <td>OF OVIVI</td> <td></td>	Russell Gulch area	-0.020	PC	0.025	с с	1.0	ac ac	NECO	200	OF OVIVI	
0.002 17 0.006 15 0.02 17 4 NFCC 0.03 18 NFCC 0.03 19 0.05 11.7 4 NFCC 0.03 18 NFCC 0.03 18 NFCC 0.03 19 0.05 11.7 4 NFCC 0.03 19 0.05 11.7 4 NFCC 0.03 19 0.05 11.1 14 22 21 NFCC 0.03 21 11.7 24 22 11.7 24 22 11.7 24 27 25 21 125 21 21 22 21 22 21 22 21 22 21 22 21 22	CC downstream Chicago	0.030	ן ע 1	-010	400	- - - -	200		200	2# DX11	
0.001 7 0.004 7 0.004 7 0.003 19 0.003 19 NFCC 0.03 0.0006 18 0.043 10 0.1 14 1.0 14 NFCC 0.03 0.0003 19 0.043 10 0.04 16 NFCC 0.03 0.0003 29 0.01 14 1.0 14 CC 0.03 0.0003 29 0.02 19 0.6 16 NFCC 0.03 0.0010 22 -1.45 25 2.5 2.1 NFCC 0.03 0.010 22 -1.45 22 -2.5 21 NFCC 0.03 0.010 22 -1.46 22 NFCC 0.03 0.01 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.05 0.03 0.05 0.05	Milliams Tunnel	0000	17	21.0	2 L		2 4				
0.0006 18 0.001 14 1.0 14 0.0 16 16 NFCC 0.0 0.0003 19 0.01 14 1.0 14 0.6 16 NFCC 0.03 0.0003 19 0.001 14 1.0 14 0.6 16 NFCC 0.03 0.0010 22 -1.45 25 -1.45 25 21 NFCC 0.03 0.004 21 -0.03 22 -1.45 25 -1.45 22 NFCC 0.03 0.010 22 -1.45 22 NFCC 0.03 0 NFCC 0.03 0.0204 Zank Ibsold Rank Ibsold Rank NFCC 0.03 0.17 3 23 24 NFCC 0.03 1 NFCC 0.03 0.17 3 229 1 885 1 NFCC 0.03 1 NFCC 0.03 1	Smith Hill Gulch area	0.021	-	0000	2.0	4 7 7	2 4		0110	CH UVIVI	
0.000 20 0.01 74 1.0 74 0.0 0.0003 19 -0.0004 18 0.6 16 NFCC 0.03 -0.010 22 -1.45 25 -1.45 25 21 NFCC 0.03 -0.010 22 -1.45 25 -1.45 25 0.1 0.0 0.03 -0.010 22 -1.45 25 -1.46 22 NFCC 0.03 -0.024 23 -0.05 22 -4.6 22 NFCC 0.03 -0.024 23 -0.05 22 -4.6 22 NFCC 0.03 D-CdLoad Rank Ibs/d Rank Ibs/d Rank NFCC 0.03 D-CdLoad 0.17 3 250 1 885 1 NFCC 0.03 0.17 3 259 1 NFCC 0.03 1 NFCC 0.03 0.17 4 1.	CCSD WWTP effluent	0.0006	87	0400	10	2.0	τ q		200	N* 9111	
0.0003 19 0.0004 18 0.6 16 NFCC OU3 -0.030 25 -0.02 19 -9.7 24 CC OU3 -0.010 22 -1.45 25 -2.5 21 NFCC OU3 -0.024 23 -0.05 22 -4.6 22 NFCC OU3 -0.024 23 -0.05 22 -4.6 22 NFCC OU3 -0.024 23 -0.055 22 -4.6 22 NFCC OU3 -0.024 23 -0.05 22 -4.6 22 NFCC OU3 ear Creek and North Fork Clear Creek Sources (separate): NetCC 0U3 1 NFCC OU3 D-CdLoad Rank Ibs/d Rank Ibs/d Rank NFCC OU3 0.01 7 0.249 2 NFCC NFCC OU3 0.03 5 0.03 8 NFCC NFCC	CC downstream Trail Ck	0000	00	0.01	14	0.0	14				
-0.030 25 -0.02 19 -9.7 24 CC -0.010 22 -1.45 25 -2.5 21 NFCC OU3 -0.024 23 -0.03 22 -4.6 22 NFCC OU3 -0.024 23 -0.05 22 -4.6 22 NFCC OU3 -0.024 23 -0.05 22 -4.6 22 NFCC OU3 ear Creek and North Fork Clear Creek Sources (separate): D-Cut Load NetCC OU3 D-CdLoad Rank Ibs/d Rank NFCC OU3 249 2 592 1 3856 1 NFCC 0.17 3 29 3 NFCC OU3 0.17 3 29 3 NFCC OU3 0.17 3 29 1 NFCC NFCC 0.17 3 29 3 NFCC 0U3 0.17 3 29 3 NFCC 0U3 0.17 3 29 3 NFCC 0U3 0.01 6 0.02 7.0 5 NFCC 0.03 7 4 2 4.3 <td>, Golden Gilpin area</td> <td>0.0003</td> <td>19</td> <td>-0.00004</td> <td>18</td> <td>0.6</td> <td>16</td> <td>NFCC</td> <td>0113</td> <td>く ぞ し マ ろ</td> <td></td>	, Golden Gilpin area	0.0003	19	-0.00004	18	0.6	16	NFCC	0113	く ぞ し マ ろ	
-0.010 22 -1.45 25 -2.5 21 NFCC OU3 -0.024 23 -0.03 24 -0.9 20 NFCC OU3 -0.024 23 -0.05 22 -4.6 22 NFCC OU3 ear Creek and North Fork Clear Creek Sources (separate): Notes/Cross-Reference Notes/Cross-Reference Notes/Cross-Reference D-Cd Load D-Cu Load D-Cu Load NetC Notes/Cross-Reference D-Cd Load D-Cu Load Rank Ibs/d Rank NFCC OU3 249 2 28 3 NFCC OU3 NFCC OU3 0.017 3 29 1 886 7 NFCC NFCC 0.017 5 0.023 5 0.023 8 NFCC 0.03 8 NFCC 0.033 5 0.001 7 0.03 8 NFCC 0.03 0.01 1 0.03 8 NFCC 0.03 0.0	, downstream of Silver Ck	-0.030	25	-0.02	19	-9.7	24	00)		
-0.004 21 -0.33 24 -0.9 20 NFCC OU3 -0.024 23 -0.05 22 -4.6 22 NFCC OU3 ear Creek and North Fork Clear Creek Sources (separate): D-Cu Load Notes/Cross-Referenc Notes/Cross-Referenc D-Cd Load D-Cu Load D-Cu Load Notes/Cross-Referenc Notes/Cross-Referenc 1bs/d Rank lbs/d Rank lbs/d Rank NFCC OU3 259 1 250 1 885 1 NFCC OU3 249 2 29 3 NFCC NFCC OU3 0.01 6 0.4 5 7.0 5 NFCC 0.03 5 0.001 7 0.03 7 NFCC 0.033 5 0.001 7 0.03 7 NFCC 0.033 7 7.0 5 NFCC 0.03 8 NFCC 0.033 2 4	i, Black Hawk area	-0.010	22	-1.45	25	-2.5	21	NFCC	013	WAG #2	
-0.024 23 -0.05 22 -4.6 22 NFCC OU3 D-Cd Load D-Cu Load D-Cu Load D-Cu Load Notes/Cross-Referenc 1bs/d Rank lbs/d Recc OU3 S lbs/d lbs/d <t< td=""><td>6, Gregory Incline area</td><td>-0.004</td><td>21</td><td>-0.33</td><td>24</td><td>-0.9</td><td>20</td><td>NFCC</td><td>013</td><td>WAG #2</td><td></td></t<>	6, Gregory Incline area	-0.004	21	-0.33	24	-0.9	20	NFCC	013	WAG #2	
Bear Creek and North Fork Clear Creek Sources (separate): Notes/Cross-Reference D-Cd Load D-Cu Load Notes/Cross-Reference 1bs/d Rank 1bs/d Rank Notes/Cross-Reference 5:92 1 250 1 885 1 NFCC 5:92 1 250 1 885 1 NFCC 0:17 2 259 2 386 2 NFCC 0:01 6 0.4 5 13 4 NFCC 0:01 6 0.28 6 0.53 6 NFCC 0:01 7 0.38 7 0.87 NFCC 0:01 7 0.38 7 NFCC 0:0001 8 0.0001 8 NFCC 0:033 2 4 2 43 2 0:033 2 4 2 43 2 0:033 2 4 2 43 2 0:033	5, Bates Gulch area	-0.024	23	-0.05	22	4.6	22	NFCC	003	WAG #2	
D-Cd Load D-Cu Load D-Cu Load Notes/Cross-Reference 5.92 1 Ibs/d Rank Ibs/d Rank Notes/Cross-Reference 5.92 1 250 1 885 1 NFCC 5.92 1 250 1 885 1 NFCC 0.17 3 29 3 28 3 NFCC 0.01 6 0.4 5 7.0 5 NFCC 0.001 8 0.11 7 0.8 7 NFCC 0.0001 8 0.01 7 0.8 7 NFCC 0.0001 8 0.001 8 7 NFCC 0.05 0.83 2 0.3 7 NFCC 0.05 NFCC 0.83 2 4.1 7 0.3 8 NFCC 0.83 2 4.3 2 0.03 8 NFCC 0.83 2 4.3	Conditions, Mainstem Clea	ar Creek and	North Fo	ork Clear Cre	ek Sourd	es (separate	:(i				
Ibs/d Rank NFCC 5.92 1 250 1 885 1 NFCC 2.49 2 59 2 386 2 NFCC 0.17 3 2.9 3 2.8 3 NFCC 0.01 6 0.4 5 7.0 5 NFCC 0.03 5 0.01 7 0.8 7 NFCC 0.033 5 0.028 6 5.3 6 NFCC 0.0001 8 0.03 8 NFCC 0.8 7 NFCC 0.83 2 4.0 1 7 0.8 7 NFCC 0.83 2 0.03 8 NFCC 0.03 8 NFCC 0.83 2 1 7 0 4.3 2		D-Cd Load		D-Cu Load		D-Zn Load		Notes/Crc	sss-Referen	ces	
5.92 1 250 1 885 1 NFCC 2.49 2 59 2 386 2 NFCC 0.17 3 29 3 28 3 NFCC 0.01 6 0.4 5 1.3 4 NFCC 0.01 6 0.4 5 7.0 5 NFCC 0.001 7 0.01 7 0.03 7 0 0.0001 8 0.003 7 0.03 7 NFCC 0.0001 8 0.003 7 0.03 7 NFCC 0.83 2 0.003 8 NFCC 0.03 7 0.83 2 4.1 7 4.3 2 2 0.83 2 4.3 2 0.03 8 NFCC 0.83 2 4.3 2 0.03 8 NFCC 0.83 2 4.3 2 2 2 2 0.83 2 4.3 2 2 2 0.83 2 4.3 2 2 2 0.83 2 4.3 2 2 2 0.83<	Description	p/sqi	Rank	lbs/dl	Rank	p/sql	Rank				
2.49 2 59 2 386 2 NFCC 0.17 3 29 3 28 3 NFCC 0.01 6 0.4 5 7.0 5 NFCC 0.01 6 0.4 5 7.0 5 NFCC 0.03 5 0.028 6 5.3 6 NFCC 0.0001 7 0.03 7 0.6 NFCC 0.0001 8 0.0001 7 0.03 8 NFCC 0.83 2 4.1 7 766 1 CC 0.83 2 4.3 2 4.3 2 2 0.83 2 4.3 2 2.0.01 2 CC 0.83 2 4.3 2 CC CDPHE 20.91 CC CD 5 CC CDPHE	sell Gulch	5.92	1	250	7	885	1	NFCC			
0.17 3 29 3 28 3 NFCC 0.04 4 4.7 4 13 4 NFCC 0.01 6 0.4 5 7.0 5 NFCC 0.03 5 0.28 6 5.3 6 NFCC 0.0001 7 0.03 7 0.8 7 NFCC 0.0001 8 0.0001 7 0.8 7 NFCC 0.83 2 4.1 1 40 1 766 1 CC 0.83 2 4.3 2 4.3 2 CC CDPHE 0.83 2 4.3 2 4.3 2 CC CDPHE	Jory Gulch	2.49	2	59	2	386	2	NFCC			
0.04 4 4.7 4 13 4 NFCC 0.01 6 0.4 5 7.0 5 NFCC 0.03 5 0.28 6 5.3 6 NFCC 0.0001 7 0.03 8 7.0 5 NFCC 0.0001 8 0.001 7 0.8 7 NFCC 0.133 2 40 1 766 1 CC 0.833 2 4 2 4.3 2 CC 0.833 2 4 2 4.3 2 CC 0.833 2 4 2 4.3 2 CC 20.91 CC CDPHE 20.91 CC CDPHE	rtz Hill Tunnel	0.17	ო	29	ო	28	ო	NFCC			
0.01 6 0.4 5 7.0 5 INFCC 0.03 5 0.28 6 5.3 6 INFCC 0.0002 7 0.01 7 0.8 7 INFCC 0.0001 8 0.001 7 0.8 7 INFCC 0.0001 7 0.03 7 INFCC INFCC 0.0001 7 0.03 8 INFCC 0.033 2 4 2 4.3 2 0.833 2 4 2 4.3 2 ICC 0.833 2 4 2 4.3 2 ICC CDPHE 20.91 CC SFCC SFCC SFCC SFCC ING	onal Tunnel	0.04	4	4.7	4	13	4	NFCC			
0.03 5 0.28 6 5.3 6 NFCC 0.0002 7 0.01 7 0.8 7 NFCC 0.0001 8 0.001 8 0.03 8 NFCC 4.11 1 40 1 766 1 CC 0.83 2 4 2 4.3 2 CC 0.83 2 4.3 2 CC CDPHE 5 5 5 5 CC CDPHE	gory Incline	0.01	9	0.4	2	7.0	Q	NFCC			
0.0002 7 0.01 7 0.8 7 NFCC 0.0001 8 0.0001 8 0.03 8 NFCC 4.11 1 40 1 766 1 CC 0.83 2 4 2 4.3 2 CC 0.83 2 4 2 4.3 2 CC 0.83 2 4 2 4.3 2 CC 5 5 5 5 5 CC CDHE 1 1 C 5 5 5 5 5	CCSD WWTP effluent	0.03	ŝ	0.28	9	5.3	9	NFCC			
0.00001 8 0.0001 8 NFCC 4.11 1 40 1 766 1 CC 0.83 2 4 2 4.3 2 CC 0.83 2 4 2 4.3 2 CC 0.83 2 6 7 CC CDPHE 20.91 CC CC CDPHE SFCC	se Guich	0.0002	~	0.01	2	0.8	~	NFCC			
4.11 1 40 1 766 1 CC 0.83 2 4 2 43 2 CC 20.91 CC CDPHE 20.91 CC CDPHE SFCC Fall River CDMG	Williams Tunnel	0.00001	8	0.0001	8	0.03	80	NFCC			
0.83 2 4 2 43 2 CC 20.91 CC CDPHE SFCC CDPHE Fall River CDMG	h Fork Clear Creek	4.11	1	40	1	766	1	00	1		
20.91 CC CDPHE CC CDPHE SFCC Fall River CDMG	t Fork Clear Creek	0.83	2	4	2	43	2	CC			
20.91 CC CDPHE CC CDPHE SFCC Fall River CDMG	nked above regarding OU4:							1			
Fall River CDMG	eign Lunnei Mine					20.91		000	CDPHE	WAG #3; L	ewis (2003)
Fall River CDMG	lorf Mine							SFCC		っキりイハ	
Creak	Glory Hole							Fall River	CDMG	J. Herron (*	/05 e-Mails).
OCCH	Trail Creek										

TDS Project No. 0405-5

Sheet 1 of 1

6/23/05

Upper Clear Creek Watershed Plan

			3			100	4			100	e e			100	~		_		-	1000	0	-	L.C.	01				-		_	~
	D-Cu #	40.2			D-Cu #	72.8	2.4		D-Cu #	116	3.9		D-Cu #	113	3.8				D-Cu #	448	14.9	D-Cu #	156	5.2		D-Cu #	331	11.0		D-Cu #	603
	Flow D-Zn # D-Cn #	2565	85.5		Flow D-Zn # D-Cu #	733	24.4		Flow D-Zn # D-Cu #	3029	101		D-Zn # D-Cn #	3298	110				D-Zn # D-Cn #	8713	290	# uZ-0	3773	126		# uZ-0	7882	263		D-Zn # D-Cu #	12487
flows:	Flow	137		100000	Flow	136			Flow	240			Flow	272			flows:		Flow	329		Flow D-Zn # D-Cn #	27.8			Flow D-Zn # D-Cu #	322				357
High-Streamflows:	rages:				rages:	I			rages:				rages:				High-Streamflows:		rages:			rages:				rages:	I			rages:	
Hig	Ave	1.0	10		Ave	6	(0		Ave	1.	•		Ave	1.0			High		Ave			Ave	1.	-		Ave				Ave	i a
	D-Cu #	7.5	0.25		D-CI #	13.9	0.46		D-Cu #	17.7	0.59		D-Cu#	21.5	0.72				D-Cu #	112	3.7	D-Cu #	25	0.83		D-Cu #	89	3.0		D-Cu #	136.5
	Flow D-Zn # D-Cu # Averages:	763	25.4		# UZ-0	127	4.2		# UZ-0	859	28.6		D-Zn # D-Cu # Averages:	889	29.6				D-Zn # D-Cu # Averages:	3005	100	D-Zn # D-Cu # Averages:	1208	40.3		# UZ-C	2780	92.7	50	D-Zn # D-Cu # Averages:	4213
OWS:	Flow	23.6			Flow D-Zn # D-Cu # Averages:	21.2			Flow D-Zn # D-Cu # Averages:	40.5		CC25+CC	Flow	44.8			OWS:		Flow	59.3		Flow	5.95			Flow D-Zn # D-Cu # Averages:	69.0		C40+CC	Flow I	65.2
Low-Streamflows: Post-Argo	Averages:	per month	lbs/day		Averages:	per month	lbs/day	Post-Argo	Averages:	per month	Ibs/day	Check-Sum CC25+CC20	Averages:	per month	lbs/day		Low-Streamflows:	Post-Argo		per month	lps/day	Averages:	per month	6.9 Ibs/day		Averages: 1	583 per month	s/day	Ę	Averages: /	per month
	A P IS IN COLUMN	47.1 p			10.000	78.0 p	2.6 11	u.	110 100 00	126 p	4.2 lt	0	and show the second	125 p	4.2 It	'		0.	COLUMN TWO IS NOT	664 p	22.1 lb	Statistics.	208.5 p	6.9 lb	on the local of the	Station in	583 p	19.4 Ibs/day	Summer Street		872 per mol
	9			1	9				9				DD						D-C			D-C	2(0-0		2	ļ	Q d	
	Flow D-Zn # D-Cu #	3469	116	1	D-Zn # D-Cu #	879	29.3		D-Zn # D-Cn #	4213	140		Flow D-Zn # D-Cu #	4348	145				D-Zn # D-Cu #	12549	418	D-Zn # D-Cn #	4698	157		D-Zn # D-Cu #	11143	371	1	Flow D-Zn # D-Cu #	17247
eamnows;	Flow	165			Flow	152			Flow	293			Flow	317			flows:		Flow	407		Flow	35.1			Flow	397		-	Flow	443
Hign-Stream	D-Cu # Averages:	1			Averages:				Averages:	1			D-Zn # D-Cu # Averages:				High-Streamflows:		D-Cu # Averages:			Averages:	1			D-Cu # Averages:	I			D-Zn # D-Cu # Averages:	
	D-Cu #	6.1	0.20		D-Ca #	12.2	0.41		D-Cu # Average	16.2	0.54		D-Cu #	18.3	0.61				D-Cu #	109	3.6	D-Cu #	19.0	0.63		D-Cu #	82	2.7		D-Cu # /	128.2
-	# uZ-Q	919	30.6	1	# UZ-0	110	3.7		D-Zn #	1021	34.0	0	# uZ-Q	1029	34.3		20			3836	128	# uZ-0	1104	36.8	and the second	D-Zn #	3044	101	-	# uz-0	4940
nows:	Flow	23.1		i	FIOW	20.0			Flow	39.6		CC25+CC2	Flow	43.1			lows:			59.0	-	Flow	5.59	9		Flow	64.6		CC40+CC5	Flow 1	64.6
POR-CC25	Averages:	per month	lbs/day	POR-CC20	Averages:	per month	lbs/day	POR-CC26	Averages:	per month	Ibs/day	Check-Sum CC25+CC20	Averages:	per month	Ibs/day		Low-Streamflows:	POR-CC40	Averages:	per month	lbs/day	Averages:	per month	lbs/day	POR-CC60	Averages:	per month	Ibs/day	Check-Sum CC40+CC50	Averages:	per month

Source: Adapted from TDS Consulting Inc. (2004).

TDS Project No. 0405-5

Note: Cross-Reference Table 2-2 for details	of calculat	HF delin
T Average IN	(IDS/d):	LF = low-flow season (October through April): HF = high-flow s

POR					1					1				
	SW-27	Burlei	Inel	Avg		SW-27	Burle		Avg Q, cfs		SW-27	Burleigh Tunne	nel	Avg Q, cfs
Avg Conc	121.9		52719	0.075	0.075 Avg Conc			57620	0.068	0.068 Avg Conc	80.8	3.99	48942	0.087
# samples	D-Cd	D-Cu	D-Zn	Avg Loads	Avg Loads # samples	D-Cd	D-Cu	D-Zn	Avg Loads # samples	# samples	D-Cd	D-Cu	D-Zn	Avg Loads
11	0.049	0.002	21.3	lbs/d	9	0.021	0.001	6	lbs/d	2	0.038		22.9	lbs/d
# values	7	7	12		# values	9	9	9		# values	5	5	2	
POR														
	SW-53	McClelland Tunnel	unnel	Avg Q, cfs										
Avg Conc	15.6		3632	0										
# samples	D-Cd	D-Cu	D-Zn	Avg										
0	0.005	0.017	1.1											
# values	9	9	9											
POR														
	SW-17(0)	SW-17(O) Rockford Tunnel	Innel	Avg Q, cfs										
Avg Conc	15.1	1300	3755	0.016										
# samples	D-Cd	D-Cu	D-Zn	Avg Loads										
80	0.001	0.11	0.33	lbs/dl										
# values	8	8	80											
POR					L L					HF				
	SW-14	Trail Creek		Avg Q, cfs		SW-14	Trail Creek		Avg Q, cfs		SW-14	Trail Creek		Avg Q, cfs
Avg Conc	4.5	130	981		0.508 Avg Conc	5.7	191	1280	0.286	0.286 Avg Conc	3.2	70.2	682	0.840
# samples	D-Cd	D-Cu	D-Zn	Avg	# samples	D-Cd	D-Cu	D-Zn	Avg Loads # samples	# samples	D-Cd	D-Cu	D-Zn	Avg Loads
12	0.012	0.36	2.7	lbs/dl	9	0.005	0.29	2.0	lbs/d	9	0.01	0.32	3.1	lbs/d
券 values	12	12	12		# values	9	9	9		# values	9	9	9	
POR					LF					HF				
	SW-12	Big Five Tunnel		Avg Q, cfs		SW-12	Big Five Tunnel		Avg Q, cfs		SW-12	Big Five Tunnel		Avg Q, cfs
Avg Conc	61.7		11604		0.028 Avg Conc	86.4	3268	11862	0.02	0.02 Avg Conc	7.1	1229	11347	0.04
# samples	D-Cd	D-Cu	D-Zn	Avg Loads # samples	# samples	D-Cd	D-Cu	D-Zn	Avg Loads # samples	# samples	D-Cd	D-Cu	D-Zn	Avg Loads
12	600.0		2.0	lbs/d	9	0.008	0.32	1.1	lbs/d	9	0.008	0.25	3	lbs/d
# values	12	12	12		# values	9	9	9	1	华 values	9	9	9	
POR					LF					HF				
	SW-26	VC above CC	1	Avg Q, cfs	· · · ·	SW-26	VC above CC		Avg Q, cfs		SW-26	VC above CC		Avg Q, cfs
Avg Conc	570	11722	5	2.2	2.2 Avg Conc	1070	37860	8	0.04	0.04 Avg Conc	446	5188	75067	2.18
# samples	D-Cd	D-Cu	D-Zn	Avg Lo	ads # samples	D-Cd	D-Cu		Avg Loads # samples	# samples	D-Cd			Avg Loads
10	1.9	137	246	lbs/d	N .	0.23	00.7	49.8	lps/d	00	5.2	60.8	880	lbs/d
# values	10	10	01	NO LF US	来 values	N	N	~		uolicv 将	00		Q	

TDS Project No. 0405-5

Page 1 of 2

6/23/05

Upper Clear Creek Watershed Plan

	SW-47	Chase (Avg C										
Avg Conc	5.8		22	0.37										
# samples	D-Cd	0	D-Zn	Avg Loads										
10	0.012	0.022	3.5	lbs/d										
# values	8	8	6											
POR					5					부				
	SW-46	Greaory Incline	ne	Ava Q. cfs		SW-46	Greaory Incline	line	Avo O cfs		SW-46	Gradon Incline	au	Avn O rfe
Ava Conc	18.0		7463	0	20 1 Avn Conc	13.3		TACA R047	000	Ave Conc	5 10		0220	22 22 22 22
aelomoe #	P.C.C	C	0 70	Aver	Coloco Bar	0	0	0 75	And Led	NIDO BAL	4	0	2000	5.02
condinas	0	000	117-0	Superior Bar	# sairipies	5	5-5	U7-0	AVG LOBOS	Avg Loads # samples	22	2-2	17-C	Avg Loads
21 21	G.1	10	100	DISO	C C	20.0	F. T. T	2.1	D/SOI	1	7.2.1	259	1201	lbs/d
POR						>	,	>		Tr values		-	-	
	SW-23	Quartz Hill Tunnel	unnel	Avg Q, cfs	2111									
Avg Conc	614	46263	119313	0.043										
# samples	D-Cd	D-Cu	D-Zn	Avg Loads										
2	0.14	10.7	27.5	lbs/d										
# values	~	7	7											
POR					5					브				
	SW-44	Gregory Gulch		Avg Q, cfs		SW-44	Gregory Gulch	ch	Avg Q, cfs		SW-44	Gregory Gulch	4	Ava Q. cfs
Avg Conc	146		17785	1.53	1.53 Avg Conc	60.0	1394	6543	0.24	Avg Conc	189		25655	2.87
# samples	D-Cd	D-Cu	D-Zn	Avg Loads # samples	# samples	D-Cd	D-Cu	D-Zn	Avg Loads		D-Cd	D-Cu	D-Zn	Avg Loads
19	1.20		146	lbs/dl	6	0.08	1.8	8.6	lbs/d	10	1.3	9.3	176	lbs/d
# values	15	15	17		# values	5	5	7		# values	10	10	10	
POR					LF					HF				
	SW-41	National Tunnel		Avg Q, cfs		SW-41	National Tunnel	Inel	Ava Q. cfs	Promote Name	SW-41	National Tunnel	lei	Ava O cfs
Avg Conc	16.9		9727	0.095	0.095 Avg Conc	6.9	110	8127	0.12	0.12 Avg Conc	23.3		11087	0.065
# samples	D-Cd	0-0		Avg Loads # samples	# samples	D-Cd	D-Cu		Avg Loads	Avg Loads # samples	0-0	0	D-Zn	Avg Loads
17	0.009	0.45	5.0	lbs/dl	2	0.004	0.07	4	lbs/d	2		0.61	3.9	lbs/d
# values	11	15	15		券 values	5	5	7		# values	10	10	10	
POR														
	SW-13	East /		Avg Q, cfs										
Avg Conc	6.4	67.5	969	0.17										
# samples	D-Cd	D-Cu	D-Zn	Avg Loads										
5	0.006	0.06	06.0	lbs/d										
# values	6	9	6											
POR					Ц					LT L				
	SW-38/7	Russell Gulch	No. of the second se	Avg Q, cfs		SW-38/7	Russell Gulch		Avg Q. cfs		SW-38/7	Russell Gulch		Ava O. cfs
Avg Conc	14.4	440	55	3.9	3.9 Avg Conc	4.1	27.4	1107	0.53	0.53 Avg Conc	25.3	972	4333	8.36
# samples	D-Cd	D-Cu		Avg Loads # samples	# samples	D-Cd	D-Cu		Avg Loads	Avg Loads # samples	D-Cd	D-Cu	D-Zn	Avg Loads
10	0.30	9.2	51.4	lbs/d	2	0.01	0.1	3.2	lbs/d	4	1.4	43.8	195	lbs/d
# values	~	~	00		th violance	V	V	ų		4 volues	c			

Page 2 of 2

TDS Project No. 0405-5

6/23/05

LF LF	D-Cd	D-Cu	D-Zn	D-Cd D-Cu D-Zn Avg Loads	Notes:	HF D-Cd D-Cu	D-Cd	D-Cu	D-Zn	Avg Loads	Notes.
nout (aross):	0.23	8.2	49.8	lbs/d	(1)	Input (pross):	5.2	60.8	RRO	lheld	141
of reduction.	7000	7000	7000	Pion	E	or endination.	1.00	0.00	1000	nan	E
	120	6.7.	44.8		12)	to reduction.	261	04.00	Who who		(2)
MOS adjust	40%	400%	400%		101	MOS adjust	1004	1007	YOUR		101
TMs removed	0.08	2.9	17.9		1	TMs removed	0.1	12.2	176		121
TMs sediments	0.04	0.88	1.8			TMs sediments	0.73	87	88.0		
TMs to stream	0.15	5.2	31.9			TMs to stream	4.2	48.6	704		
SS 2 TMs Ids	D-Cd*	D-Cu	D-Zn	CC-40		SS 2 TMs Ids	D-Cd*	D-Cu	D-Zn	CC-40	
Pre-Treatment	0.54	37	1001		(2)	Pre-Treatment	00	140	000		16/
Post-Treatment	0.50	1.6	83.9		2	Post-Treatment	10	46	202		1
% load reduction	8%	56%	16%			% load reduction	14%	37%	30%		
High Rank Reference:	Area 7 - No Table 3-4: 7	orth Fork Cle able 3-5: al	ear Creek (v	Area 7 North Fork Clear Creek (w/ tributaries) Table 3-4: Table 3-5: and Appendix Table C-2.	(Stream Segment 13b (and impacting SS 11 downstream) 2 Categories: (a) mines: (b) waster-rock piles.	b (and impa	cting SS 1	1 downstream	am)	
LF	D-Cd	D-Cu	D-Zn	Avg Loads	Notes:	HE	D-Cd	D-CII	D-7n	Avo I nade	Notae.
A. Upstream WT							}	5			
Gregory Incline	0.02	1.1	7.2	Ibs/d	(1)	Gregory Incline	2.7	259	1071	Ibe/d	(1)
Gregory Gulch	0.08	1.8	8.6	lbs/d	(1)	Gregory Gulch	1.3	9.3	176	Ibs/d	(1)
National Tunnel	0.004	0.07	5.4	lbs/d	(1)	Netional Tunnel	0.01	0.61	3.9	lbs/d	(1)
nput (gross):	0.10	3.0	21.2	lbs/d	(2)	Input (gross):	4.0	269	1261	lbs/dl	(2)
% reduction:	%06	%06	%06			% reduction:	60%	%09	60%		Mar IV
	60.0	2.70	19.1				2.4	161	751		
MOS adjust:	40%	40%	40%		(2)	MOS adjust:	10%	10%	10%		(2)
INIS LEITIOVED	0.04		0.0			I MIS removed	0.24	1.01	1.9.1		
LINIS SEGIMENTS	0.00	0/.0	0.0			I INIS SEGIMENTS	0.79	12.9	31.5		
I MIS TO STEAM	00.00	ZR.L	13.6			I MIS TO STREAM	3.8	253	11/16		
SS 13b TMs loads	"b-cd"	D-Cu	D-Zn	CC-50		SS 13b TMs loads	D-Cd*	D-Cu	D-Zn	CC-50	
Pre-Treatment	0.12	0.63	36.8		(2)	Pre-Treatment	1.3	6.9	151		(3)
Post-Treatment	0.09	0.31	29.8			Post-Treatment	1.3	3.7	119		
% load reduction	29%	51%	2			% load reduction	4%	47%	24%		
B. Downstream	D-Cd	D-Cu	D-Zn	Avg Loads	Notes:	HF	D-Cd	D-Cu	nZ-D	Avg Loads	Notes
Russell Gulch Other NPSs	0.01	0.1	3.2	lbs/d	(1)	Russell Gulch Other NPSs	1.1	43.8	195	b/sdl	(F) (8)
Input (gross):	0.01	0.1	3.2	lbs/d	(9)	Input (gross):	1.14	43.8	196	lbs/d	(9)
% reduction:	50%	50%	50%			% reduction:	30%	30%	30%		
	0.01	0.04	1.59				0.34	13.1	58.5		
MOS adjust:	40%	40%	40%		(2)	MOS adjust:	20%	20%	20%		(2)
Mis removed	0.002	0.02	0.63			TMs removed	0.07	2.6	11.7		
I MS sediments	0.00	0.00	0.03			TMs sediments	0.05	2.1	3.5		
FMs to stream	0.01	0.06	2.5			TMs to stream	1.07	41.1	183		
SS 13b TMs loads	D-Cd*	D-Cu	D-Zn	CC-50		SS 13b TMs loads	D-Cd*	D-Cu	D-Zn	CC-50	
Pre-Remediation	0.12	0.63	36.8		(3)	Pre-Remediation	1.3	6.9	157		(3)
Post-Remediation	0.12	0.62	36.2			Post-Remediation	1.3	6.4	149		
W land and which we have											

6/23/05

TDS Project No. 0405-5

Page 1 of 2

0.021 0.001 20.0 20.0 1bs/d (1) Input (gross): % reduction: 0.01 0.001 0.001 10.005 50% 70% </th <th>D-Cu D-Zn</th> <th>Avg Loads</th> <th>Notes:</th>	D-Cu D-Zn	Avg Loads	Notes:
60% 70% Feduction: 70% Feduction: 71% readmond 0.001 0.005 0.20 0.31 1.4.7 7 70% </td <td>000 00</td> <td>lheld</td> <td>(4)</td>	000 00	lheld	(4)
0.01 0.005 12.8 7 MOS adjust: 50% 50% 50% 50% 50% 50% 50% 0.01 0.000 0.31 TMS removed TMS removed 0.01 0.000 0.01 0.000 0.31 TMS to stream 0.01 0.000 0.020 30.6 CC-25 S3 2 TMs loads 0.01 0.020 0.20 24.6 S3 2 TMS loads S9% 0.06 0.20 24.6 7 S9% S9% S9% Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Stream Segment input Pre-Treatment S0.6 TMS resonced 12003 0.22 3.1 Ibs/d 1 S0.7 Table 5- 12013 0.11 1.6 Notes The Table 5- 12013 0.13 1 Ibs/d 1 S0.7 Table 5- 12013 0.11 Ibs/d 1 Ibs/d 1 S1 Table 5- 0.013		Discu	(1)
50% 50% 50% 7.0 Sadjust: 0.0005 6.3 0.31 TMs removed TMs removed 0.0005 14.7 TMs to stream TMs to stream 0.0005 14.7 TMs to stream TMs to stream 0.0005 14.7 TMs to stream TMs to stream 0.20 30.8 (3) Pre-Treatment 0.20 30.6 TMS Stream Segment 0.20 24.6 (3) Pre-Treatment 0.20 20.8 (3) Pre-Treatment 0.20 20.8 DOMINANT Input Pre-Treatment 0.21 1.1 Ibs/d (1) Pre-Treatment 0.21 1.1 Ibs/d (1) Pre-treatment 0.14 7.5 bs/d Pro-true TMS removed 0.12 0.03 1.1 Ibs/d (1) Pre-treatment 0.13 1.1 Ibs/d (1) Pre-treatment Pre-treatment 0.14 2.6 <td< td=""><td></td><td></td><td></td></td<>			
0.006 0.002 0.03 1 Title to stream 0.01 0.0005 0.31 Title sediments 0.01 0.0005 0.20 30.6 C-255 SS 2 TWs loads 0.06 0.20 30.6 C-265 SS 2 TWs loads Post-Treatment 4% 0% 19% Notes Appendix Table C-2. Dominant Input Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Stream Segme Notes App. Table C-2. P-Cd D-Cu D-2n Avg Loads Notes App. Table C-2. 0.013 0.61 3.1 Ibs/d (1) Notes App. Table C. 0.013 0.61 3.1 Ibs/d (1) Notes App. Table C. 0.013 0.61 0.32 2.0 Ibs/d (1) Iput (gross) 0.			107
D-Cd* D-Cd* <th< td=""><td></td><td></td><td>(7)</td></th<>			(7)
0.01 0.000 1.4.7 TMs to stream 0.01 0.0005 1.4.7 TMs to stream 0.01 0.0005 1.4.7 TMs to stream 0.06 0.20 30.6 (2) Pre-Treatment 0.06 0.20 30.6 (3) Pre-Treatment 0.06 0.20 24.6 (3) Pre-Treatment 0.06 0.20 24.6 (3) Pre-Treatment 0.06 0.20 24.6 (3) Pre-Treatment 0.06 0.24 D-Cu D-Cu D-Cu D-Cu 0.01 0.21 D-Cu D-Cu D-Cu D-Cu 0.013 0.51 3.1 Ibs/d (1) Input (gross): 0.013 0.51 3.1 Ibs/d (1) Pre-Treatment 0.013 0.51 3.1 Ibs/d (1) Input (gross): 0.01 0.33 1.16 MOS Trable Cr MOS 0.013 0.12 <td< td=""><td></td><td></td><td></td></td<>			
0.01 0.005 14.7 TMs to stream 0.06 0.20 30.6 (3) Pre-Treatment 0.06 0.20 30.6 (3) Pre-Treatment 0.06 0.20 30.6 (3) Pre-Treatment 0.06 0.20 24.6 SS 2 TWs loads Ood reduction Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Stream Segme Pre-Treatment Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Stream Segme Pre-Treatment Area 0.005 0.23 1.1 Ibs/d App. Table C. 0.013 0.61 0.31 Ibs/d App. Table C. App. Table C. 0.013 0.51 1.1 Ibs/d App. Table C. App. Table C. 0.013 0.51 0.31 Ibs/d App. Table C. App. Table C. 0.013 0.51 1.5 Motes: App. Table C. App. Table C. 0.013 0.51 0.31 Ibs/d (1) Motes: Table C.			
D-Cd* D-Cu D-Zn CC-25 SS 2 TWs loads 0.06 0.20 30.6 (3) Pre-Treatment 4% 0% 19% (3) Pre-Treatment 4% 0% 19% 7% Post-Treatment Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Stream Segme Pre-Treatment Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Stream Segme Pre-Treatment Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Stream Segme Pre-Treatment 12008 0.32 1.1 Ibs/d Ips/d Pre-Treatment 0.001 0.31 1.1 Ibs/d Ips/d Pre-Treatment 0.013 0.012 0.62 0.62 Stream Segment Treatment 0.013 0.012 0.62 0.62 Stream Segment This is estream 0.011 0.33 1.1 Ibs/d This is equitorin: This is equitorin: 0.012 0.03 0.12 0.62 Stream Segment This is equitorin: <	0.0016 19.2		
0.06 0.20 30.8 (3) Pre-Treatment 9% load reductio 4% 0% 19% 9% 19% % load reductio Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Streatm Segment % load reductio % load reductio Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Streatm Segment % load reductio Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Streatm Segment % Table 3-4; Table 3-5; and Appendix Table C.2. Dominant Input % 0.005 0.24 7.5 hs/d Dominant Input 0.006 0.32 1.1 Ibs/d (1) % Pre-treatment 0.013 0.013 0.31 1.6 Notes; App. Table C. Table Section: 0.013 0.013 0.12 0.82 2.0 Ibs/d (1) % Feduction: 0.011 0.33 1.1 Ibs/d (1) % Feduction: % Feduction: % Feduction: % Feduction: % % Feduction:	11 D-7n	CC.25	
0.00 0.20 24,6 0.00 Dest-Treatment Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Stream Segme % load reduction Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Stream Segme % load reduction Table 3-4; Table 3-5; and Appendix Table C-2. Dominant input Post-Treatment 0.005 0.14 7.5 b/svd App. Table C- 0.008 0.32 1.1 Ibs/d (1) Input (gross): 0.013 0.61 3.1 Ibs/d (1) Input (gross): 0.013 0.31 1.6 7.1 Ibs/d (1) Input (gross): 0.013 0.31 1.6 0.03 0.12 0.63 MoS adjust 0.013 0.12 0.63 0.03 0.12 0.63 MoS adjust 0.003 0.12 0.63 3.4.0 CC-26 SS 2 TMs loads 0.013 0.12 0.63 3.4.0 (3) Pre-Treatment 0.013 0.12 0.63 3.4.0 (3) <td>ď</td> <td></td> <td>16/</td>	ď		16/
4% 0% 19% 0% 19% 9% 0ad reduction Area 5 - Georgetown-to-Idaho Springs (incl. tributaries) Stream Segme % load reduction % load reduction D-Cd D-Cd D-Cd D-Cd D-Cd App. Table C.2. Dominant input 0.005 0.123 1.1 Ibs/d (1) Input (gross): 50% 0.013 0.61 3.1 Ibs/d (1) Input (gross): 50% 0.013 0.61 3.1 Ibs/d (1) Input (gross): 50% 0.013 0.61 3.1 Ibs/d (1) Input (gross): 50% 0.01 0.32 1.6 3.1 Ibs/d (1) Input (gross): 0.01 0.31 0.61 3.4 0.63 3.4 (1) 0.02 0.01 0.32 1.6 3.4 (1) Input (gross): 0.03 0.01 0.49 2.6 3.4 (2) Mos adjust 0.03 0.01 <td>017 017 017 017 017 017 017 017 017 017</td> <td></td> <td>10</td>	017 017 017 017 017 017 017 017 017 017		10
Area 5 - Georgetown-lo-Idaho Springs (incl. tributaries) Stream Segment Table 3-4; Table 5-5; and Appendix Table C-2. Dominant Input D-Cd D-Cu D-Cu D-Cu 0.005 0.74 7.5 hs/d App. Table C-2. 0.005 0.74 7.5 hs/d App. Table C-2. 0.005 0.74 7.5 hs/d App. Table C-2. 0.005 0.229 2.0 tbs/d App. Table C-2. 0.001 0.31 1.1 hs/d 1 pout (gross): 0.013 0.12 0.32 1.1 hs/d 1 pout (gross): 0.001 0.31 1.6 NOS adjust TMs removed TMs removed 0.001 0.012 0.02 0.03 2.1 Ibs/d (1) pout (gross): 0.012 0.02 0.03 0.12 0.03 1.04 2.5 TMs reduction: 0.012 0.02 0.03 2.12 0.02 0.03 1.1 1.1 1.1			
Table 3-4; Table 7-0005 Dominant Input D-Cd Domination Input D-Cd Dominant Input D	all Creek)		
D-Cd D-Cu D-Zn Avg Loads Notes: HF 0.005 0.22 2.0 Ibs/d Notes: App. Table Creek 0.013 0.61 3.1 Ibs/d (1) Ips/d App. Table Creek 0.013 0.32 1.0 Ibs/d (1) Notes: App. Table Creek 0.013 0.31 1.6 3.1 Ibs/d (1) Notes: App. Table Creek 0.013 0.31 1.6 3.1 Ibs/d (1) Notes: App. Table Creek 0.01 0.31 1.6 3.1 Ibs/d (1) Notes: Treatment 0.01 0.49 40% 2.5 MOS adjust TMS to streatment 0.01 0.49 2.5 Avg Loads SS 2 TMS loads Notes: Treatment 0.12 0.49 2.5 Avg Loads SS 2 TMS loads Notes treatment 0.12 0.49 2.5 Avg Loads SS 2 TMS loads Notes treatment 0.12 0.49			
2 0.029 0.74 7.5 ibs/d hbs/d App. Table C. 1 0.005 0.32 1.1 Ibs/d (1) Big Five Turn 0.013 0.013 0.61 3.1 Ibs/d (1) Big Five Turn 0.013 0.013 0.61 0.31 1.6 App. Table C. 0.013 0.012 0.61 0.31 1.6 Provide Turn 0.01 0.31 1.6 (1) % reduction: % reduction: 0.01 0.31 0.62 0.03 0.12 0.63 TMs removed 0.01 0.49% 2.5 MCS adjust TMs removed TMs removed 0.01 0.49 2.5 0.62 0.33 TMs removed 0.12 0.49 2.5 MCS adjust TMs removed 0.12 0.49 2.5 TMs removed TMs removed 0.12 0.49 2.5 S2 TMs loads TMs removed 0.12 0.49 2.4	D-Zn	Avg Loads	Notes:
Image: Noise of the construction of the con	6 29.9	lbs/d	
Image 0.008 0.32 1.1 Ibs/d (1) Big Five Tunn 0.013 0.61 3.1 15/d (1) Nov eduction: 0.013 0.61 3.1 15/d (1) Nov eduction: 0.01 0.31 1.6 3.1 15/d (1) Nov eduction: 0.01 0.31 1.6 3.1 15/d (2) NOS adjust: 0.000 0.07 0.03 0.12 0.62 0.03 adjust: 0.000 0.07 0.03 0.12 0.63 34.0 (2) Mos adjust: 0.01 0.49 2.5 Mos adjust: TMs reamoved 25 0.02 0.07 0.03 34.0 (3) Pre-Treatment 0.12 0.54 33.4 70 70 Post-Treatment 0.12 0.54 33.4 70 70 Post-Treatment 0.12 0.49 2.5 Avg Loads 71 Post-Treatment		lbs/d	
0.013 0.61 3.1 Ibs/d (1) Input (gross): 50% 50% 50% 50% 50% reduction: 0.01 0.31 1.6 (2) MOS adjust 0.01 0.31 0.61 3.1 Ibs/d (1) % reduction: 0.01 0.30 0.12 0.62 TMs removed 7Ms removed 0.01 0.49 2.5 TMs to stream 7Ms to stream 0.12 0.54 34.0 (3) Pre-Treatment 0.12 0.54 33.4 (3) Pre-Treatment 0.12 0.54 33.4 (3) Pre-Treatment 0.12 0.54 33.4 (3) Pre-Treatment 0.12 0.54 2% Xs load reduction Sc treatment 0.12 0.54 33.4 (3) Pre-Treatment 0.12 0.54 2% Xs load reduction Sc treatment 0.13 4.2 33.4 Ys load reduction Sc tr		lhs/d	
50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 70% <td></td> <td>lhe/d</td> <td>(1)</td>		lhe/d	(1)
0.00 0.01 0.03 0.06 0.05 1.6 (2) MOS adjust 0.003 0.12 0.62 TMs removed TMs removed 0.003 0.12 0.62 TMs removed TMs to stream 0.01 0.49 2.5 TMs to stream TMs to stream 0.01 0.49 2.5 0.62 TMs to stream 0.01 0.49 2.5 0.62 TMs to stream 0.12 0.49 3.4.0 (3) Pre-Treatment 1% 9% 2% Avg Loads Post-Treatment 0.12 0.49 33.4 (3) Pre-Treatment 1% 9% 2% Avg Loads Pre-Treatment 0.12 0.49 33.4 (3) Pre-Treatment 1% 9% 2% Avg Loads Ms removed 0.13 4.2 33.1 TMs removed Ms removed 0.13 0.14 3.0 (3) Pre-Treatment 0.13			1.1
40% 40% 40% 40% 40% 40% 40% 40% 40% 70% <td></td> <td></td> <td></td>			
0.003 0.12 0.682 1.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.003 0.012 0.013 0.012 0.013 0.012 0.014 0.012 0.014 0.012 0.014 0.012 0.014 0.012 0.014 <th0< td=""><td></td><td></td><td>101</td></th0<>			101
0.000 0.12 0.03 0.03 TMs removed 0.01 0.03 TMs removed 0.03 D-Cd* D-Cd* D-Cd* D-Cd* D-Cd* D-Cd* SS 2 TMs loads 0.12 0.03 33.4 (3) Pre-Treatment 0.12 0.49 2% Avg Loads Freatment 0.13 4.2 33.1 TMs removed TMs removed 0.13 4.2 33.1 TMs removed 0.13 HF 0.05 7.7 2.9 TMs removed 0.14 0.14 0.14 0.14 0.14 0.11 3.0 0.27 0.3 0.56 62.5 (4) Post-Treatment 0.11 3.0 0.56 62.5 (4) <td></td> <td></td> <td>(2)</td>			(2)
0.01 0.09 0.00 0.04 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 <th0.06< th=""> 0.06 0.06 <th0< td=""><td>18.0 80.0</td><td></td><td></td></th0<></th0.06<>	18.0 80.0		
0.01 0.49 2.5 0.01 0.49 2.5 0.01 0.49 2.5 0.01 0.02 0.	2		
D-Cd* D-Cu D-Zn CC-26 SS 2 This loads 0.12 0.54 34.0 (3) Pre-Treatment 0.12 0.54 34.0 (3) Pre-Treatment 0.12 0.49 33.4 (3) Pre-Treatment 0.12 0.49 33.4 (3) Pre-Treatment 0.12 0.49 33.4 (3) Pre-treatment 0.12 0.49 2% 2% % load reductio 0.13 4.2 33.1 Nus treatment % load reductio 0.13 4.2 33.1 Arg Loads TMs removed 0.13 4.2 33.1 TMs removed 7 0.13 4.2 2.9 TMs removed 7 0.25 7.7 65.1 TMs to stream 7 0.26 0.25 7.3 30 92.7 7 0.26 62.5 7.3 7 9.0 9.04 7 0.03 0.56 62.5 <td< td=""><td>0.48 4.6</td><td></td><td></td></td<>	0.48 4.6		
0.12 0.54 34.0 (3) Pre-Treatment 0.12 0.49 33.4 (3) Pre-Treatment 0.12 0.49 33.4 (3) Pre-Treatment 1% 9% 2% 2% % load reductio 70tal TMIS Loads Removed (Stream Segment 11): Post-Treatment % D-Cd D-Cu D-Zn Avg Loads TMs removed 0.13 4.2 33.1 TMs removed 7 0.13 4.2 33.1 TMs removed 7 0.13 4.2 33.1 TMs removed 7 0.13 4.2 2.9 TMs removed 7 0.13 4.2 2.9 TMs removed 7 0.25 7.7 65.1 TMs to stream 7 0.26 0.25 (3) Pre-Treatment 0.03 0.056 62.5 (4) Post-Treatment 75% 81% 33% Post-Treatment 7 % No cod reductioi	n D-Zn	CC-26	
0.12 0.49 33.4 Post-Treatment 1% 9% 2% % load reductio Total TWs Loads Removed (Stream Segment 11): % load reductio % D-Cd D-Cu D-Zn Avg Loads TMs removed 0.13 4.2 33.1 TMs removed 7.1 HF 0.13 4.2 33.1 TMs removed 7.1 HF 0.13 4.2 33.1 TMs removed 7.1 HF 0.13 4.2 33.1 TMs removed 7.1 1.1 1.1 0.13 4.2 33.1 TMs removed 7.1 1.1 1.1 0.25 7.7 65.1 TMs removed 7.1 1.1	4.2 140		(3)
1% 9% 2% 2% % load reduction Total TMs Loads Removed (Stream Segment 11): % load reduction % % D-Cd D-Cu D-Zn Avg Loads % % 0.13 4.2 33.1 TMs removed % % 0.13 1.7 2.9 TMs removed % % 0.05 1.7 2.9 TMs removed % % % 0.25 7.7 65.1 TMs removed % <	4.2 140		
Total TWs Loads Removed (Stream Segment 11): HF D-Cd D-Cu D-Zn Avg Loads TMs removed 0.13 4.2 33.1 Avg Loads TMs removed 0.13 4.2 33.1 TMs removed TMs removed 0.05 1.7 2.9 TMs removed TMs to stream 0.25 7.7 65.1 TMs to stream TMs to stream 0.26 0.27 CC-60 SS 11 TMs load 0.03 0.11 3.0 92.7 (4) Post-Treatment 75% 81% 33% (4) Post-Treatment * D-Cd loads in streams estimated from pro-rated concentrations, using L 1 1	1% 0%		
Total TWS Loads Removed (Stream Segment 11): HF D-cd D-cu D-zn Avg Loads TMs removed 0.13 4.2 33.1 TMs removed TMs removed 0.05 1.7 2.9 TMs removed TMs removed 0.05 1.7 2.9 TMs removed TMs removed 0.05 7.7 5.1 TMs removed TMs removed 0.05 7.7 5.9 TMs removed TMs removed 0.11 3.0 92.7 (3) Pre-Treatment 0.03 0.56 62.5 (4) Post-Treatment 75% 81% 33% % load reduction	13	3	
D-Cd D-Cu D-Cu <thd-cu< th=""> D-Cu D-Cu <thd< td=""><td>Removed (Stree</td><td>am Segmen</td><td>\$ 11):</td></thd<></thd-cu<>	Removed (Stree	am Segmen	\$ 11):
0.13 4.2 33.1 TMs removed 0.05 1.7 2.9 TMs sediments 0.25 7.7 65.1 TMs postments 0.26 7.7 65.1 TMs to stream 0.25 7.7 65.1 TMs postments 0.25 7.7 65.1 TMs to stream 0.11 3.0 92.7 (3) Pre-Treatment 0.03 0.56 62.5 (4) Post-Treatment 75% 81% 33% % load reduction	N-20	Avg Loads	
0.05 1.7 2.9 TMs sediments 0.25 7.7 65.1 TMs to stream 0.26 7.7 65.1 TMs to stream 0.11 3.0 92.7 (3) Pre-Treatment 0.03 0.56 62.5 (4) Post-Treatment 75% 81% 33% (4) Post-Treatment *D-Cd loads in streams estimated from pro-rated concentrations, using L * *			
0.25 7.7 65.1 TMs to stream 0.26 7.7 65.1 TMs to stream 0.27 D-Cu D-Zn CC-60 SS 11 TMs load 0.11 3.0 92.7 (3) Pre-Treatment 0.56 62.5 (4) Post-Treatment 75% 81% 33% % load reduction * D-Cd loads in streams estimated from pro-rated concentrations, using C * 1	21.7 130		
D-Cd* D-Cu D-Zn CC-60 SS 11 TMs load 0.11 3.0 92.7 (3) Pre-Treatment 0.03 0.56 62.5 (4) Post-Treatment 75% 81% 33% % load reduction * D-Cd loads in streams estimated from pro-rated concentrations, using C	343 2087		
0.11 0.2 0.2 0.3 Pre-Treatment 0.0 3 81% 33% 0.4 % load reduction % load reductio			
0.11 3.0 92.7 (3) Pre-Treatment 0.03 0.56 62.5 (4) Post-Treatment 75% 81% 33% % load reduction * D-Cd loads in streams estimated from pro-rated concentrations, using C %	7-0	CC-60	
0.03 0.56 62.5 (4) Post-Treatment 75% 81% 33% (4) Post-Treatment * D-Cd loads in streams estimated from pro-rated concentrations, using E	11.0 263		(3)
 75% 81% 33% D-Cd loads in streams estimated from pro-rated concentrations, using C 	1.8 126		(4)
* D-Cd loads in streams estimated from pro-rated concentrations, using D	84% 52%		
	sulting Inc., 2004	t).	
(5)	latively insignific	cant contribut	tions of D-Co
(2) See text discussion. (8) Combined water stream, Gregory Incline and Gregory Gulch.	al accord moor	O ha aniha	ronn Gulph

6/23/05

TDS Project No. 0405-5

Page 2 of 2

UCC 319 Watershed Plan

TempMods	TempMods Stream Segment	Units:	ug/L or Ibs/d Units:		ug/L or Ibs/d	
#SS#	Description	TM CoC	Ambient	Reduction S	Std/Projected	Std/Projected Notes and discussion
2	upper mainstern CC	D-Cu Conc.	9.6	15.6%	8.1	See Table 1-3. CC-25/CC-26, LF Cu in compliance; see Tables 3-4 & 3-6.
	LF season	D-Cu Load	3.7	56.8%	1.6	Target Ibs/d; CC-40 is suggested as reference point (for lower SS 2)
	Ambient/Projected:	1	9.6	56.8%	4.2	Load reduction, 2.1 lbs/d Cu, from proposed Virginia Canyon remediation
	62					Cu-load reduction is estimated to be achieved (Table 3-6).
		D-Zn Conc.	363	29.2%	257	See Table 1-3. CC-25/CC-26, LF Zn not in compliance with WQS.
		D-Zn Load	100	16.1%	83.9	Target Ibs/d; CC-40 is suggested as reference point (for lower SS 2)
	Ambient/Projected:	D-Zn Conc.	363	16.1%	305	Load reduction, 16.1 lbs/d Zn, from proposed Virginia Canyon remediation
						Zn-load reduction is estimated not to achieve temporary mod (Table 3-6).
<u>9a</u>	Fall River	D-Cu Conc.	15.8	30.4%	11.0	See Table 1-3. CC-30, HF Cu not in compliance with WQS target.
	HF season	D-Cu Load		0.0%		Target Ibs/d; CC-40 is suggested as reference point (for SS 2)
	Ambient/Projected:	D-Cu Conc.	15.8	0.0%	15.8	No additional TMs load reduction is proposed (Herron, 2001; CDPHE, 2003).
						Maintain ambient conditions for time being; tuture remediation is recommended.
90 0	Trail Creek	D-Cd Conc.	5.1	9.8%	4.6	See Table 1-3. CDPHE 5673, HF Cd not in compliance with WQS target.
	HF season	D-Cd Load		0.0%		No TMs load reduction is proposed at this time. See Virginia Canyon loads.
	Ambient/Projected:	D-Cd Conc.	5.1	0.0%	5.1	Load reduction, 0.04 lbs/d Cd, from proposed Virginia Canyon remediation.
	i l					Maintain ambient conditions for time being: future remediation is recommended.
		D-Cu Conc.	167	11.4%	148	See Table 1-3. CDPHE 5673, HF Cu not in compliance with WQS target.
		D-Cu Load		0.0%		No TMs load reduction is proposed at this time. See Virginia Canyon loads.
	Ambient/Projected:	D-Cu Conc.	167	0.0%	167	Load reduction, 2.1 lbs/d Cu, from proposed Virginia Canyon remediation
						Maintain ambient conditions for time being; future remediation is recommended.
		D-Zn Conc.	1082	1.3%	1068	See Table 1-3. CDPHE 5673, HF Zn not in compliance with WQS target.
		D-Zn Load		0.0%		No TMs load reduction is proposed at this time. See Virginia Canyon loads.
	Ambient/Projected:	D-Zn Conc.	1082	0.0%	1082	Load reduction, 16.1 lbs/d Zn, from proposed Virginia Canyon remediation
						Maintain ambient conditions for time being; future remediation is recommended.
13b	North Fork Clear Ck	D-Cd Conc.	6.1	1.6%	6.0	See Table 1-3. CC-50, LF Cd in compliance with WQS target.
	LF season	D-Cd Load	0.12	25.0%	0.09	Target Ibs/d; CC-50 is suggested as reference point (for SS 13b)
	Ambient/Projected:	D-Cd Conc.	6.1	25.0%	4.6	Load reduction, 0.03 lbs/d Cd, from OU4 remediation
						Cd-load reduction is estimated to be achieved (Table 3-6).
		D-Cu Conc.	67.8	5.6%	64.0	See Table 1-3. CC-50, LF Cu in compliance with WQS target.
		D-Cu Load	0.63	50.8%	0.31	Target Ibs/d; CC-50 is suggested as reference point (for SS 13b)
	Ambient/Projected:	D-Cu Conc.	67.8	50.8%	33.4	Load reduction, 0.32 lbs/d Cu, from OU4 remediation
						Cu-load reduction is estimated to be achieved (Table 3-6).
		D-Zn Conc.	1905	2.2%	1864	See Table 1-3. CC-50, LF Zn in compliance with WQS target.
		D-Zn Load	36.8	18.8%	29.9	Target lbs/d; CC-50 is suggested as reference point (for SS 13b)
	Ambient/Projected:	D-Zn Conc.	1905	18.8%	1548	Load reduction, 6.9 lbs/d Zn, from OU4 remediation
						Zn-load reduction is estimated to be achieved (Table 3-6).
11	lower mainstem CC	D-Zn Conc.	479	29.2%		See Table 1-3. CC-60, Zn in compliance with WQS target.
	LF season	D-Zn Load	92.7	32.6%		Target Ibs/d; CC-60 is suggested as reference point (for SS 11)
	Ambient/Projected:	D-Zn Conc.	479	32.6%		Load reduction, 30.2 lbs/d Zn, from upstream remediation
	E.					Zn-load reduction is estimated to be achieved (Table 3-6).

Table 4-5 -- Attainment of Applicable Standards, Upper Clear Creek Impaired Segments

TDS Project No. 0405-6/7

UCC 319 Watershed Plan

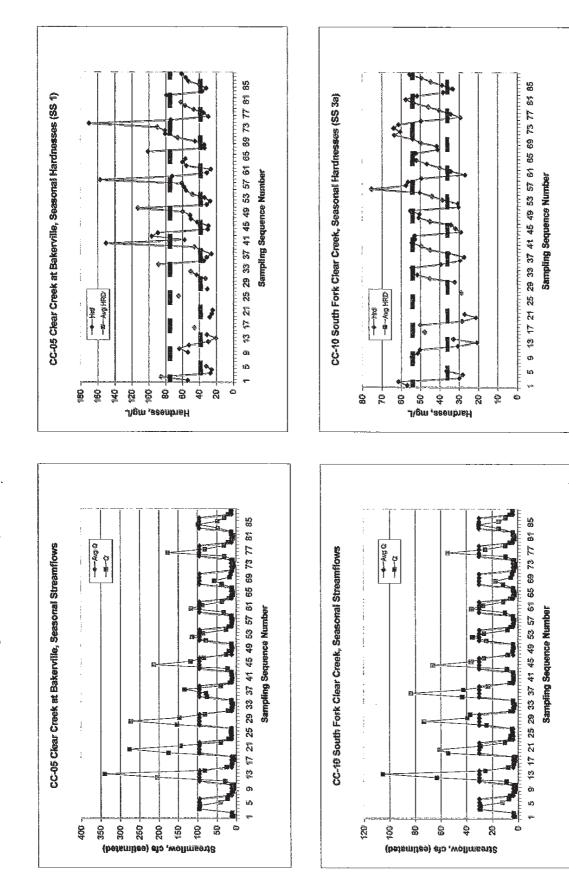
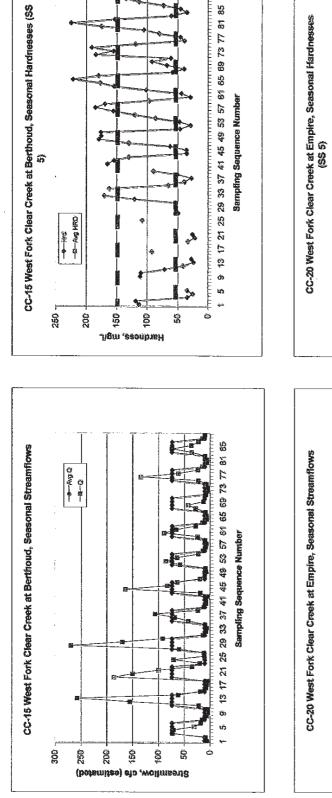
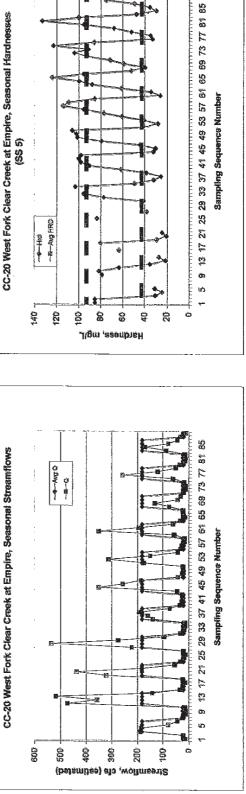

	A REAL PROPERTY OF A REA					
TVSs	Stream Segment	Units:	ug/L or Ibs/d	Units:	ug/L or Ibs/d	
*SS	Description	TM CoC	Ambient	Reduction	TVS/Projected	Notes and discussion
2	upper mainstem CC	D-Cu Conc.	9.6	17.7%	7.9	See Table 1-3. CC-25/CC-26, Cu in compliance; see Tables 3-4 & 3-6.
	LF season	D-Cu Load	3.7	56.8%	1.6	Target lbs/d; CC-40 is suggested as reference point (for lower SS 2)
	Actual (est):	D-Cu Conc.	9.6	56.8%	4.2	Load reduction, 2.1 lbs/d Cu, from proposed Virginia Canyon remediation
Richen I.						Cu-load reduction is estimated to be achieved (Table 3-6).
		D-Zn Conc.	363	71.6%	103	See Table 1-3. CC-25/CC-26, Zn not in compliance with WQS target (TVS).
		D-Zn Load	100	16.1%	83.9	Target lbs/d; CC-40 is suggested as reference point (for lower SS 2)
	Actual (est):	D-Zn Conc.	363	16.1%	305	Load reduction, 16.1 lbs/d Zn, from VC remediation
						Zn-load reduction is estimated not to achieve TVS target value (Table 3-6).
9a	Fall River	D-Cu Conc.	15.8	85.4%	2.3	See Table 1-3. CC-30, HF Cu not in compliance with WQS target (TVS).
	HF season	D-Cu Load		0.0%		Target Ibs/d; CC-40 is suggested as reference point (for lower SS 2)
	Actual (est):	D-Cu Conc.	15.8	0.0%	15.8	No additional TMs load reduction is proposed (Herron, 2001: CDPHE, 2003). Maintain ambient conditions for time being: future remediation is recommended
96	Trail Creek	D-Cd Conc.	5.1	56.9%	2.2	See Table 1-3. CDPHE 5673. HF Cd not in compliance with WOS target (TVS)
	HF season	D-Cd Load		0.0%		No TMs load reduction is proposed at this time. See Virginia Canvon loads (SS#2)
	Actual (est):	D-Cd Conc.	5.1	0.0%	5.1	Load reduction, 0.04 lbs/d Cu, from proposed Virginia Canyon remediation
	0					Maintain ambient conditions for time being: future remediation is recommended.
		D-Cu Conc.	167	94.9%	8.6	See Table 1-3. CDPHE 5673, HF Cu not in compliance with WQS target (TVS).
		D-Cu Load		0.0%		No TMs load reduction is proposed at this time. See Virginia Canyon loads (SS#2)
	Actual (est):	D-Cu Conc.	167	0.0%	167	Load reduction, 2.1 lbs/d Cu, from proposed Virginia Canyon remediation
						Maintain ambient conditions for time being: future remediation is recommended.
		D-Zn Conc.	1082	89.6%	113	See Table 1-3. CDPHE 5673, HF Zn not in compliance with WQS target (TVS).
		D-Zn Load		0.0%		No TMIs load reduction is proposed at this time. See Virginia Canyon loads (SS#2)
	Actual (est):	D-Zn Conc.	1082	0.0%	1082	Load reduction, 16.1 lbs/d Zn, from proposed Virginia Canyon remediation
						Maintain ambient conditions for time being; future remediation is recommended.
13b	North Fork Clear Ck	D-Cd Conc.	6.1	36.1%	3.9	See Table 1-3. CC-50, LF Cd is not in compliance with ultimate WQS target (TVS).
	LF season	D-Cd Load	0.12	25.0%	0.09	Target Ibs/d; CC-50 is suggested as reference point (for SS 13b)
	Actual (est):	D-Cd Conc.	6.1	25.0%	4.6	Load reduction, 0.03 lbs/d Cd, from OU4 remediation
						Cd-load reduction is estimated not to achieve TVS target value (Table 3-6).
		D-Cu Conc.	67.8	75.1%	16.9	See Table 1-3. CC-50, LF Cu is not in compliance with ultimate WQS target (TVS).
		D-Cu Load	0.63	50.8%	0.31	Target lbs/d; CC-50 is suggested as reference point (for SS 13b)
	Actual (est):	D-Cu Conc.	67.8	50.8%	33.4	Load reduction, 0.32 lbs/d Cu, from OU4 remediation
						Cu-load reduction is estimated not to achieve TVS target value (Table 3-6).
		D-Zn Conc.	1905	88.4%	221	See Table 1-3. CC-50, LF Zn is not in compliance with ultimate WQS target (TVS).
		D-Zn Load	36.8	18.8%	29.9	Target lbs/d; CC-50 is suggested as reference point (for SS 13b)
	Actual (est):	D-Zn Conc.	1905	18.8%	1548	Load reduction, 6.9 lbs/d Zn, from OU4 remediation
						Zn-load reduction is estimated not to achieve TVS target value (Table 3-6).
11	lower mainstem CC	D-Zn Conc.	479	74.1%	124	See Table 1-3. CC-60, LF Zn is not in compliance with ultimate WQS target (TVS).
	LF season	D-Zn Load	92.7	32.6%	62.5	Target lbs/d; CC-60 is suggested as reference point (for SS 11)
	Actual (est):	D-Zn Conc.	479	32.6%	323	Load reduction, 30.2 lbs/d Zn, from upstream remediation
						Zn-load reduction is estimated not to achieve TVS target value (Table 3-6).

Table 4-6 -- Attainment of TVS Values, Upper Clear Creek Watershed Impaired Stream Segments

TDS Project No. 0405-6/7


Headwaters	SS#2	Headwaters SS #2 Upper mainstern CC Oct-April CC	no remediat Oct-April	10m) CC-28	Est. load reductions Applicable Standards	Ultimate reductions # s Underlying Standards	<pre># Est. load reductions % WFCC Site-Spec Std</pre>	# = in order to achieve former (underlying) standards Joint contribution of mainstern (CC-25) & WFCC: (CC-20)
Zml	Zin loads CC-26	Q, cfs 40.9	Conc.ug/L	Laad, #/d 33.3	Conc,ug/L Load, #/d	I Conc.ug/L Load, #/d 6 103 22.7	Conc.ug/L Load, #/dl	Os and loads averaged between sample Os and LF monthly-load Os
Tributary Zm I	Zn loads estimated	Fall River Q, cfs 6.5	Oct-April Conc.ug/L	CC-30 L Losd, #/d 5 0.95				use 1994-2004 PDR
Tributary Zn li	Zh loads estimated	Adutional zin load needed applies to the exceedance. SS #9b Trait Creek Oct-April CC-31 O, cfs Conc.up/L Load, # estimated 1.0 894	Oct-April Conc,ug/L B94	L Load.#/d				inote: limited (CDPHE, 1-yr) stata calculated load, using averages: flows estimated
Tributary Zn I	Additional SS #2 Zn loads estimated	Additional Zn load needed applies to HF exceedance. SS #2 Chicago Creek Oct-April CC-35 Q, cfs Conc.ug/L Load, # estimated 6,0 5,9 0	oct-April Conc.ug/L 5.9	cc.35 cc.35 Load, #/d 0.20				See TM 5. Appendix Table C.2, D.Zn LF load = 7.5 losid. use 1994-2004 POR
		Upper mainstem Q, cfs	Oct-Aprili Add sbow	Add above Load, #/d				add Fall River Trail Creek/Chicago Creek
Virginia Canyon	zn loads cumulative nyon SS#2	Virginia Ca	w Oct-April	9.B7	127 127	3 103 30.	2 191 55.9	back-calculate equivalent concentration from load $\mathfrak{B}(\Omega)$. At this location, the ultimate Zn standard probably is not attained .
		Q, cfs 0.04	Canc.ug/L 231284					Average from literature data/sources (see TN/5, Table 3-3)
Mine Discharge Zn Io	arge SS#2 Zn loads estimated	Argo Treated Effluent Oct-April Q, cfs Conc.ug/ 0.51 2	Conc.ug/L Load, #1d Conc.ug/L Load, #1d 21 0.1	Load, #16 0.1				Table 3-5; see Lewis (2001; 2000a); compare 31,9 lbs/d (Table 3-6) add Argo Tunnei (post-treament, 4/92+) use CLIPHE date; compare with other data
SS #2 Zm lo	Zn loads cumulative							adjusted for Argo Tunnel Inifow (treated)
Unknown Zn le	Zn loads PSs/NPSs	ck values: 51.2	363	100	257 70.8	103 28.4 Intrie to low HIRDI	191 52.6 Ideas the lower HIPD/I	Tables 4-6 and 4-6, applicable & utilimate standards, respectively. This represents finus and 2n local from university accurate (CC #23)
	5	Zn load needed to	61.1 Check OK be removed to al	131.3 tain std.	83.9		83.9	83.9 31.3 For applicable standard. 15% reduction estimated: 29% needed
Upstream	SS #11	Lower mainstem CC Q. cfs	Oct-April Conc.ua/L	CC-40 Losd.#id				
Zmlk	Zn loads compare	61.1	396.5	131.3				check balance with previous cumulation
Tributary Zn lo	SS #13b Zn loads CC-50	North Fork CC Q, cfs 5.4	Oct-April CC-50 Comc.ug/L Load.#/d	CC-50 Load.#/d				
		Cross-check values: 3.6 1905 36 Additional Zn load needed to be removed to attain stid	1905 1905 at to at	36.8 tain std.:	1864 36.0 0.8	221 4.3	405 7.8	Tables 4-5 and 4-6, applicable & utimate standards, respectively Stream standard (temoorary mod) achievaet however FS is not
Subtotal Zn loads		66.5	466	165.9				
Unknown Zn loads Compare 1	Zn loads channel losses Compare to below:		-1.4 8877 65.1 Check OK	-66.9				mainstern alluvial system, Clear Creek, some diversions as well interactions with susperded/bottom sedments in stream channel
Downstream	m SS#11 Za Inade cumulativa	Lower mainstern CC Q, cfs	Oct-April Conc,ug/L	CC-60 Load, #/d				معلمة فراس الالم المعالم المالية والأحرار الالمالية المعالمات المعالمات المعالمات المعالمات المعالمات
Zmic		k valuae.		2 69	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	UPC PCI	Dec	add C.CAu and NC.C. (C.CBuy), decuct losses
Com	Compare (adjusted):	66.1	65.1 Check OK	527	62.5	121	677	62.5 US = underlying (former) standard, based upon TVS calculation.
	Additional	Additional Zn load needed to be removed to attain stri3 7	mound to at	them atry -	15-			Channel standard (lanaanse and) achtained harrent 100 is and

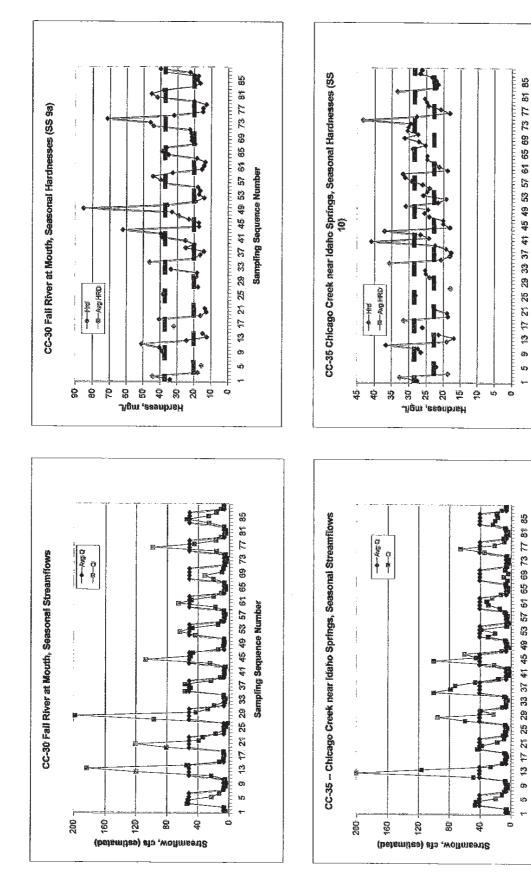
TDS Project No. 0405-8/9



TDS Project No. 0405-1

Sheet 1 of 7

TELEVILLE FOR



i T

Sheet 2 of 7

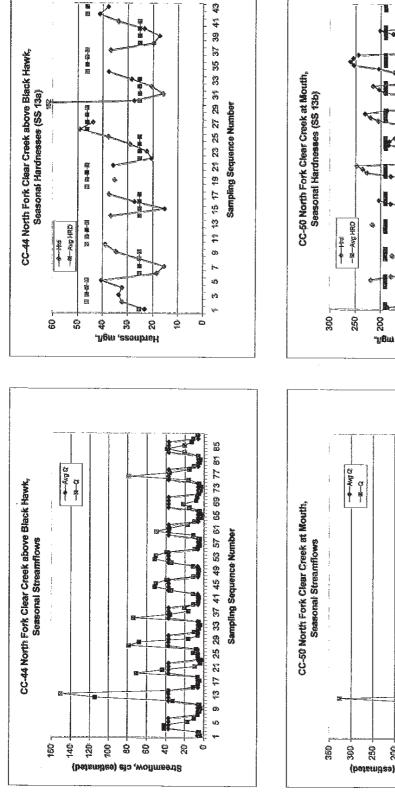
Sampling Sequence Number

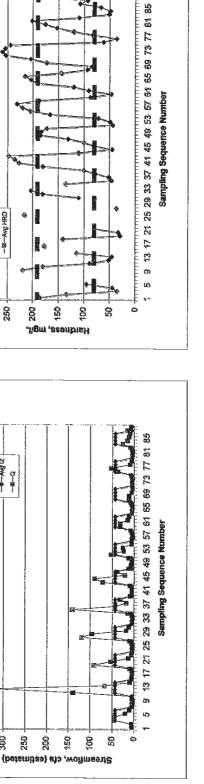
TDS Project No. 0405-1

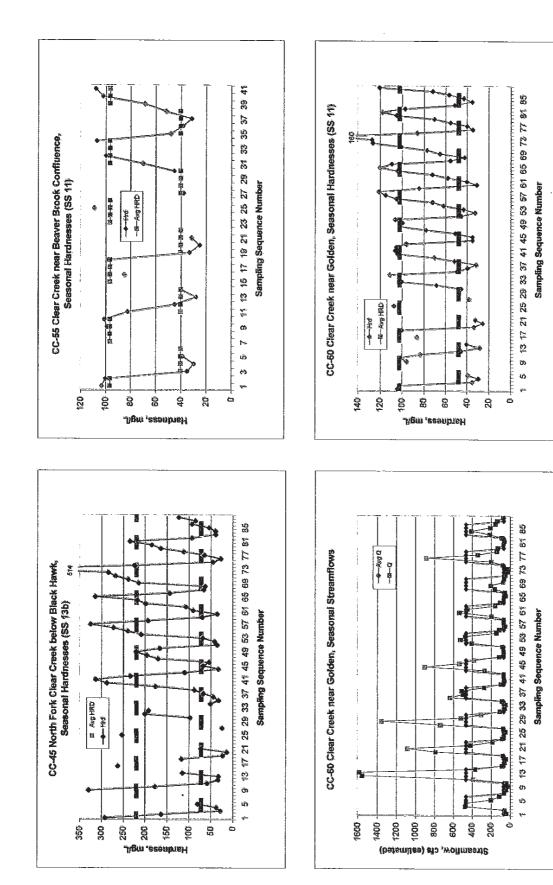

TDS Project No. 0405-1

Sheet 4 of 7

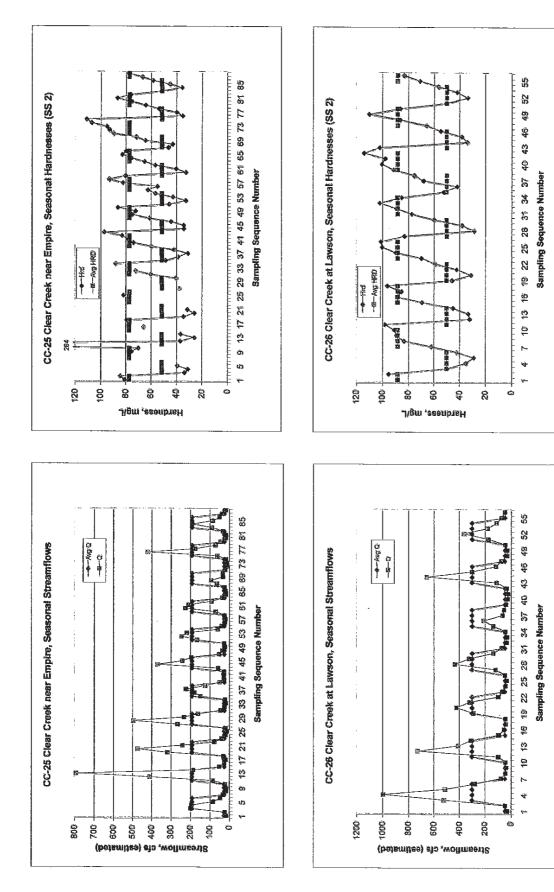
6/23/05


Sampling Sequence Number

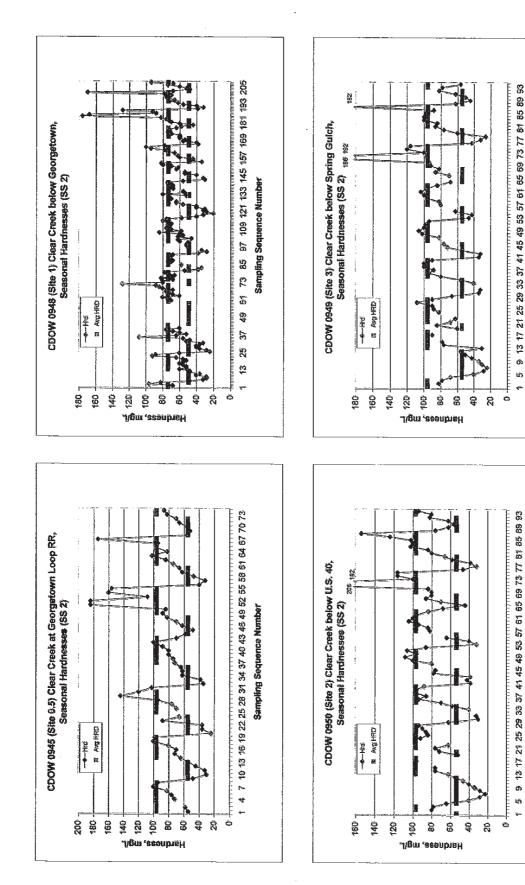

Sampling Sequence Number


Sheet 5 of 7

副


Sampling Sequence Number

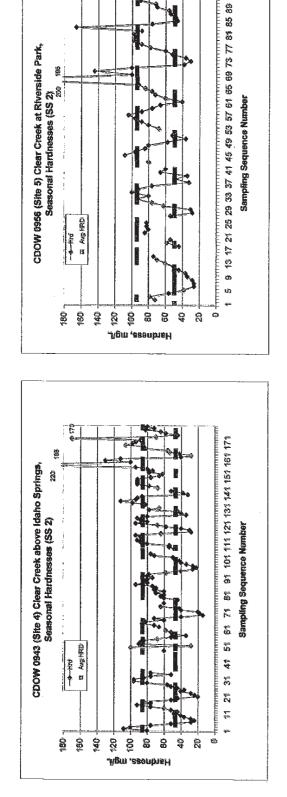
TDS Project No. 0405-1

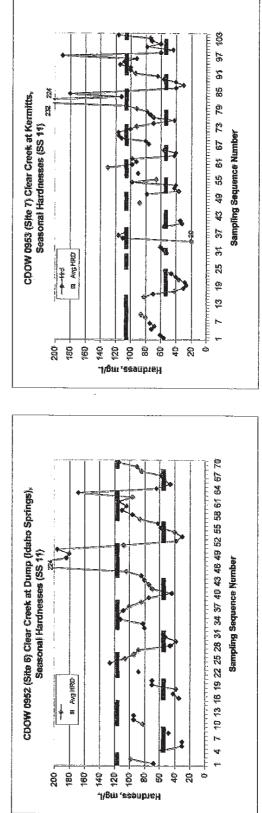

Sheet 7 of 7

6/23/05

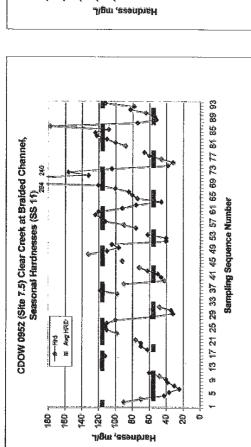
TDS Project No. 0405-1

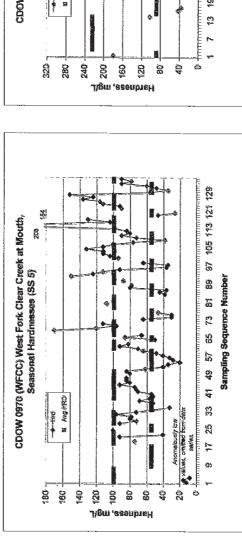
Sheet 3 of 7

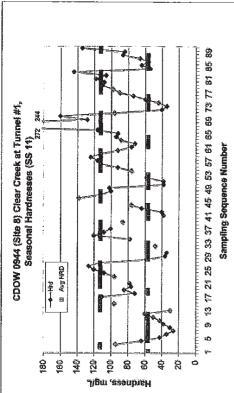

Page 1 of 4

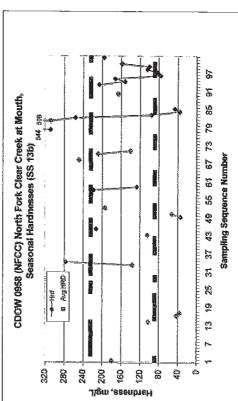

Sampling Sequence Number

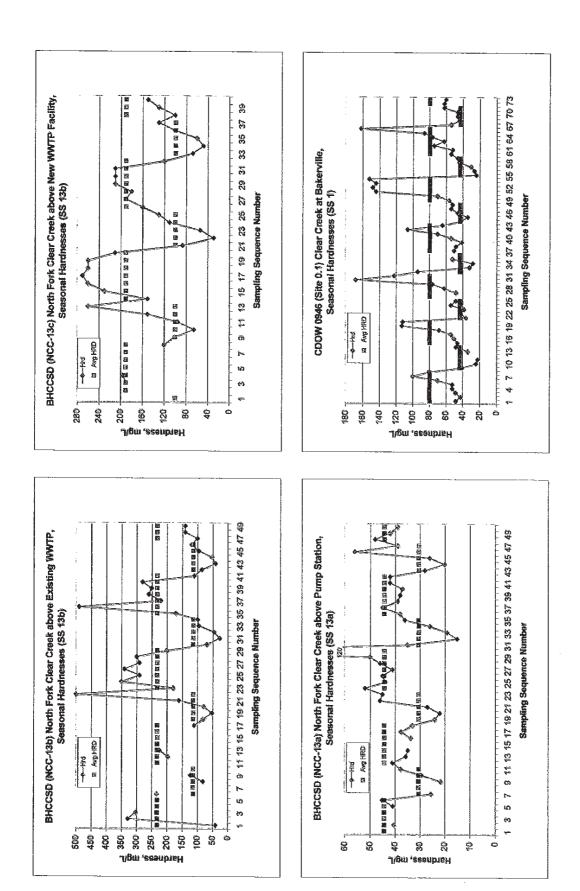
Sampling Sequence Number


6/23/05


鷧






Page 2 of 4

TDS Project No. 0405-1

Supplemental Information -- Mine-Site Characterization, Prioritization, and Remediation

e. 3 and 4. Ils under F-70);	\$480,000			-0	se below);	ed \$340,000	Design paid by Coors. Construction awaits GSC.	·	s; American Jer I-70);		
itan Claus ant Tasks Costs: itth (mill ta	Actual:			ceedances	tailings (se	Estimated	Design Constru		e Reynold mostly un		
GSC = Good Samaritan Clause. Prepared for 319-Grant Tasks 3 and 4. Impacts: Commonwealth (mill tails under	Zn, 20 ibs/d; Min	Zn, TMs, pH	TMs	SS 3a; 3b note exceedances	orta drainage; Empire	TMs; cap; Pull out of stream	pH; TMs	TMs; sediment); Siiver Creek with Jo nill and tainings pond (lida mill tailings.	TMs; sediment	TMs; sediment
Part I: Miscellaneous Notes Source: UCC-WAG (2001), Appendix B GSC = Good Samaritan Clause. Location (relative to CDOW monitoring sites): Prepared for 319-Grant Tasks 3 and 4. Upstream from CDOW Site #1 (0948), below Georgetown Impacts: Costs: Burleigh Tunnet; Diamond Mine; NPSs @ Silver Plume (see below); Anglo Saxon/Capital Prize dumps; Commonwealth (mill tails under I-70); Listed in OU3 ROD:	Passive wetland (failed 1995) Awaiting final ROD	Drainage: pipe to Burleigh for treatment Possible impacts on NPSs in Silver Plume area	Cap pile (USFS action?) Drainage flows through small wetland Historical preservation issues	SFCC currently meets stream standards (see Task 1)	Upstream from CDOW Site #2 (0950), below U.S. 40 (WFCC) WFCC: Henderson (improved water treatment); North Empire Mine, Minnesota Mine (done); Aorta drainage; Empire tailings (see below); Marshall-Russell (drainage under CDOT maintenance yard); CDOT maintenance yard. Not listed in OU3 ROD:	ngs) RI rank of 4 (worse than National Tunnel) In North Empire Creek (6 ac): Fix: cap.	Fix: Passive-wetlands treatment	Tailings are in WFCC; partly armored by boulders (10 ac); RI rank of 4 (worse than National Tunnel) Fix: cap	Upstream from CDOW Site #3 (0949), above Spring Gulch Red Elephant groundwater/dump and mill at NW end of Lawson in CC (most of dump removed); Silver Creek with Joe Reynolds; American Sisters, and Nabob (last two not in stream bed); Ohio Golch (only minor mining); Clear Creek mill and tainings pond (mostly under I-70); McLeiland drainage (tailings stabilized); Spring Gutch (mostly dry and not much mining); and Elida mill tailings. Not listed in OU3 ROD:	Pull out of stream and cap; tailings are in Silver Creek (2.5 ac); RI rank of 3.5 (worse than National Tunnel)	Pull out of stream and cap; tailings on NE side of Spring Gulch (N side of CC, 1 ac); RI rank of 3-3.5
Part I: Miscellaneous Notes Location (relative to CDOW monitorin Upstream from CDOW Site #1 (0948) Burleigh Tunnet, Diamond Mine, NPS Boston Mine; Mineral Chief Mine; Get Listed in OU3 ROD:	MT-01 Burleigh Not listed in OU3 ROD:	Diamond Mine UCC-WAG - Priority/28	Waldorf		Upstream from CDOW Site #2 (0950), below U.S. 40 (WFCC) WFCC: Henderson (improved water treatment); North Empire Marshall-Russell (drainage under CDOT maintenance yard); (Not listed in OU3 ROD:	MVV-10? North Empire (Tailings)	Aorta Drainage	MW-10 Empire Tailings	Upstream from CDOW Site #3 (0949), above Spring Gulch Red Elephant groundwater/dump and mill at NW end of Lan Sisters, and Nabob (last two not in stream bed); Ohio Gold McLelland drainage (tailings stabilized); Spring Gulch (mos Not listed in OU3 ROD:	Joe Reynolds	Elida

Supplemental Information --- Mine-Site Characterization, Prioritization, and Remediation

			Wetland (failed): Actual: \$176 000		ittle Bear removal done);		Estimated \$514,000 [only for extraction; max. of 36 lbs/d Zn; not incl. piping/trtmt.]							Actual: \$50,000			
TMs; sediment	idge) crossing TNs (Zn, 0.81 lb/d); pH (with Rockford)	ings.	TMs (Zn, 0.81 lb/d)	TMs; sediment (Zn, 1.4 lb/d)	ng done); Soda Creek (L ter		Zn (75-365 lbs/d); pH; Estimated TMs fonly for ex max. of 36 not ind. pi		TMs; sediment a.	TMs; sediment J.	TMs; sediment	(storm-related)	I IVIS, sediment (storms and runoff)		ings.	TMs; sediment	TMs
Assess impacts; stabilize as needed	Much of dump removed; some still in CC/ under CC (bridge) crossing Passive wetland considered; delayed by lack of GSC TMs (Zn, 0.8 Noted in the ROD (OU32): but not an OU	Upstream from CDOW Site #4 (0943), below Fall River above Idaho Springs Alice Mine (on Fall River; DMG has done a partial cleanup); Rockford drainage; Trail Creek tallings,	Not an OU; passive wetlands	Not an OU; remove/pull out of stream; cap Tailings in Trail Creek (2.5 ac); exceed SSs; no fish On Orohan Sites list		Passive wetlands (research stopped; complex institutional problems)	Collect/extract groundwater; pipe to Argo WWTP		Assess impacts; pull out of stream; armor or cap Tailings are in CC/eroding; Zn increasing in general area.	Assess impacts; pull out of stream; armor or cap RI: tailings not in floodplain/stream; toe is in CC/eroding	Assess impacts; pull out of stream; cap	Above Little Six; RI rank of 2 (drainage size)	Assess impacts; pull out of stream; cap of remove biles - RI rank of 2 (due to drainage size)	Little Six piles, ASARCO, one pile (Orphan Site prog.)	- ğ	Cap or collect drainage/treat	Locate/construct a repository for mine wastes for sludges produced by mine-drainage WTPs
Red Elephant	w/ MT-02? McClelland Drainage	Upstream from CDOW Site #4 (0943) Alice Mine (on Fall River; DMG has do Listed in OI i3 ROD	MT-03 Rockford	Trail Creek Tailings	Upstream from CDOW Site #5 (0946), Donna Juanita; Alma Lincoln; Big Five Vigainia Canyon (including Two Brothe Listed in OU3 ROD:	MT-4; MW-14 Big Five ??	ບເ€ີເ≏∿∕າ∕ລິVirginia Canyon GW Preority ມີ	Not listed in OU3 ROD:	Donna Juanita	Alma Lincoln	Two Brothers	(historical)	Virginia Canyon [see GW component]		Upstream from CDOW Site #6 (0952), Argo Tunnel (done); pipe to convey Ro Listed in OU3 ROD:	MW-5 Argo Tailings	UGC VAC Sludge Repository Bionity

TDS Project No. 0405-3/4

ł

Supplemental Information -- Mine-Site Characterization, Prioritization, and Remediation Gilson Gutch (Franklin Mine); Runoff from I-70 via Johnson Gutch is below this site. Upstream from CDOW Site #7 (0953), at Kermitts (I-70 and U.S.Highway 6)

NFCC: Chase Gulch tailings, Golden Gilpin tailings (partly done); Gregory Incline tailings (done); Chregord Incline drainage; Boodle Mill tailings; Nevadaville tailings; Quartz Hill tailings; Gregory Gulch tailings (mostly done); Clay County tailings (done); National Tunnel wasterock (done); NFCC tailings (done); National Tunnel drainage; and Quartz Hill drainage. Mainstem CC: Runow from L70 and U.S. Highway 6. TMs; sediment Codimont Upstream from CDOW Site #7.5 (0951), braided channel, 1.5 mi below NFCC confluence sediments eroding into Idaho Springs from Up Gilson Gulch east of Argo; TMs-rich historical and permitted mining areas. Franklin Mine (historic) Assess impacts; stabilize as needed Chase Guideh #1 (0/00) Damoual to officita Not listed in OU3 ROD: Listed in OU3 ROD: LC.VVV

MW-21	Chase Guich #1 (9/99)	#1 (9/99) Removal to offsite	Sediment	Actual:	\$75,000
MW-22	Chase Guich #2 (12/01)	#2 (12/01) Cap or culvert plus institutional controls	TMs; sediment	Estimated New (est): Estimated	\$74,000 \$75,000 \$24,000
MW-23	Golden Gilpin (2001)	Remove or cap remainder	TMs; sediment		000,1 2¢
MW-24	Gregory Incline	Active treatment; awaiting Final (OU4) ROD	TMs; pH; Zn, 6.6 lb/d	Estimated \$1,201,000	1,201,000 7 Tunnell
MW-24	National Tunnel	Active treatment; awaiting Final (OU4) ROD	TMs; pH; Zn, 2.2 lb/d		Incline]
MW-18?	Quartz Hill (2001)	Stabilize	TMs; sediment	Estimated	\$64,000
MW-18? Quartz Hill Not listed in OU3 ROD:	Quartz Hill OU3 ROD:	Active treatment; awaiting Final (OU4) ROD	TMs; pH		
	Nevadaviile	Assess impacts; stabilize/removal as needed Above Gregory Gulch; some in stream; all in floodplain (2-4 ac): eroding TMs and sediment into Gregory Gulch.	TMs; sediment		
	Gregory Gulch #3	Pull ouf of stream; cap or remove Estimated 6,000 yd3 of waste; on Orphan Sites list.	TMs; sediment		
	NCC Dredge	Locate; assess impacts; stabilize and cap. Toe in NFCC below Black Hawk (10 ac); location unctear.	TMs; sediment r.	Phseli FS	\$219,000
NFCCCTHC UCC-MAC Prontaire	ର୍ଭରିମାନ୍ତି) NCC Sediments ଧାନନ୍ତି ପ୍ରିନ୍ମୁତି	In-stream sediments; assess impacts; stabilize as neede TMs; sediment Large volume of contaminated sediments in stream bed. Sulfides and oxides will continue to contaminate stream.	tTMs; sediment		
Upstream fro Soda Creek (m CDOW Site #8 (0944), (includes Beaver Brook), i	Upstream from CDOW Site #8 (0944), west of Tunnel #1 on U.S. Highway 6 Soda Creek (includes Beaver Brook). minor properedts and septic systems: mainstem dredge piles (probebly minor impacts)	vites (orobebly minor in	nnacts)	
			in initial financial cont	(maple	

No projects are listed for this segment; it is assumed that cleanup of upstream segments will improve this one; east of Colorado Mineral Belt.

.

Supplemental Information -- Mine-Site Characterization, Prioritization, and Remediation

Part II: Source Areas with prioritization rankings Sources: Herron and others (2001); CWT Corporation (2002) Prepared for 319-Grant Task 4. # of inventoried/ranked sites:

[also see Wildeman and others (2003)] 205 sites, Herron and others (2001, Table 1) 41 sites, CWT Corporation (2002)

Virginia Car	Areas (Priority = 1)		Russell G	Russell Guich Source Areas (Priority = 1)	1	
CDMG Site	Description Size, yd3		CWT Site	CWTCosts CWT Site Description	Size, yd3 CWTCosts	WTCosts
#1	Williams and Rio Grande	\$18,630	#31	New Brunswick Claim	1700	n/a
#2	Crown Point & Virginia	see 券1	#36@	Hampton Claim (@ Priority 2)	1000	n/a
#4	Castleton Mine	\$303,907	98 #	Tiger Claim	30000	n/a
0#	Trio Tunnel	\$327,414	437	Meeker Claim (1)	400	n/a
#13	Windsor Castle Shaft	\$51,750	#42	Martin Claim	400	n/a
井14	Upper Lake Tunnel	\$20,700 /	Vote: The	\$20,700 Note: The above-named sites total \$2.488M remediation	remediation.	
#15*	Two Brothers	n/a/	Vote: CW	Note: CW/T Corp. (2002), remediation sites. Total Cost	Total Cost	\$2,487,927
#25*	Rattler Tunnel	n/a	Other CW	Other CWT sites ranked Priority 1 (excluded for \$ cutoff);	for \$ cutoff):	
#28*	Fopxhall Tunnel	n/a	9#	Lillian #3 Percent	30000	
#41	Brighton Mine	\$499,636	#16	Niagara Claim&	3000-11000	
#42*	Bride Tunnel	n/a	#17	Not on a Claim	1300	
#45	Inter Ocean Mine	\$5,175	年19	Lotus Claim	7500	
#53	Casino Mine	\$232,225	#20	West Saratoga	5000	
<i>4</i> 67	Doves Nest Mine	\$540,767	#21	Church Placer Claim	5000	
#108*	Little Emma Mine	n/a	#33	Golden Claim	1800	
#144	Inter Ocean Mine	\$138,193	#34	Powers Claim	4000	
#197*	Bald Eagle Mine	n/a	#38	Meeker Claim (2)	6000	
Added sites	Added sites cited in CWT Corporation (2002, Executive Summary):	nmery):	#39	Little Raven Claim	5000	
#12	Diamond Joe Mine (CDMG Priority 2)	\$329,666	#40	Alva Adams Claim	3000	
井82	Adit North of Bald Eagle (CDMG Priority 2)	\$24,041	#41	Golden Claim	20000	
* Cited in He	* Cited in Herron and others (2001); not in CWT Corporation (2002):		Fotal Pric	Total Priority 1 sites = 16; Priority 2 sites = 14.	- 14.	
#S 15, 42, 84	- ranked Priority 1 by		Vote: CSI	Note: CSM score ranking: 4.08/5 (Wildeman and others).	and others).	
Note: Herror.	Note: Herron et al. (2001), 17 Prionty-1 sites. 1 otal Co	l otal Cost \$2,492,104				

6/23/05

		Record (PO			120 months,); 42 pre-An	go vs. 78 į
CC-60:	(cfs)	Loadings (CC-40	(cfs)	Loadings	(lbs/mo)
Mo-Yr	Flow	D-Zn #	D-Cu #	Mo-Year	Flow	D-Zn #	D-Cu #
Oct-94	59.0		48	Oct-94			
Nov-94	49.0	1112	46	Nov-94	1		1
Dec-94	39.4	· 782	41	Dec-94			4
Jan-95	29.3	{ 1	40	Jan-95	1		5
Feb-95	25.9	1004	35	Feb-95	30.5	2052	4
Mar-95	36.3	1363	48	Mar-95	43.1	2486	5
Apr-95	50.9	2114	70	Apr-95	49.9	3005	7
May-95	269	35201	813	May-95	221	41249	109
Jun-95	1522	66410	4206	Jun-95	1325	74623	325
Jul-95	1203	29989	3845	Jul-95	1398	37526	286
Aug-95	373	12140	249	Aug-95	441	18634	110
Sep-95	182	9823	198	Sep-95			1
Oct-95	79.4	6094	122	Oct-95			
Nov-95	64.0	5100	101	Nov-95			15
Dec-95	41.3	3493	69	Dec-95	60.8	5811	12
Jan-96	36.5	2541	52	Jan-96	54.6	5351	13
Feb-96	42.3	2602	54	Feb-96	46.2	4267	10
Mar-96	51.8		58	Mar-96	49.4	5024	7
Apr-96	85.2	3671	88	Apr-96	85.2	7688	11
May-96	504	10184	903	May-96	549	11714	63
Jun-96	987	16693	1350	Jun-96	1086	18289	105
Jul-96	454	7666	344	Jul-96	557	10657	28
Aug-96	160	6456	151	Aug-96	195	5527	13
Sep-96	121	5248	152	Sep-96	140	6145	18
Oct-96	83.1	3923	129	Oct-96		6625	20
Nov-96	61.5	5179	86	Nov-96	63.1	6898	18
Dec-96	51.8	4902	73	Dec-96	47.4	5848	15
Jan-97	53.4	4680	57	Jan-97	37.9	4485	6
Feb-97	54.5	4055	39	Feb-97	35.0	3678	1
Mar-97	55.4	3030	55	Mar-97	43.9	4121	5
Apr-97	76.8	2585	106	. Apr-97	78.8	5307	14
May-97	440	14381	1108	May-97	363	12102	93
Jun-97	1385	40710	3036	Jun-97	1294	36733	384
Jul-97	536	12818	742	Jul-97	607	16035	90
Aug-97	281	7932	366	Aug-97	330	12868	51
Sep-97	146	5655	141	Sep-97		8178	25
Oct-97	101	4704	84	Oct-97	110	6402	18
Nov-97	74.1	5579	59	Nov-97	4		12
Dec-97	50.2	4180	41	Dec-97	51.1	6339	10
Jan-98	46.6	3331	128	Jan-98	42.5		7
Feb-98	45.1	2482	60	Feb-98	36.8		4
Mar-98	57.4	3365	71	Mar-98	44.3		7
Apr-98	123	6089	136	Apr-98	66.1	5803	12
May-98	495	15602	660	May-98	337		58
Jun-98	625	13306	733	Jun-98	608		58
Jul-98	470	5670	279	Jul-98	520		44
Aug-98	267	8502	436	Aug-98			

Source: TDS Consulting Inc. (2004b); monthly/annual D-TMs load summaries, sites CC-40 and CC-60. Period of Record (POR): 10/94-9/04 10 years (120 months); 42 pre-Argo vs. 78 post-Argo.

TDS Project No., 0405-5

Appendix Table C-1 -- Stream TMs LoadessmtRank(rev)/AppC1CCTMsLds

	Period of I	Record (PO	R): 10/94-9		120 months,); 42 pre-Arg	<u>jo vs. 78 pos</u> t
CC-60:		Loadings (CC-40	(cfs)	Loadings	(lbs/mo)
Mo-Yr	Flow	D-Zn #	D-Cu #	Mo-Year	Flow	D-Zn #	D-Cu #
Sep-98	145	5128	184	Sep-98	166	6444	269
Oct-98	105	3722	122	Oct-98	126	4892	178
Nov-98	78.0	4399	112	Nov-98			151
Dec-98	59.3	3710	80	Dec-98	61.6	4174	123
Jan-99	55.1	3277	98	Jan-99	50.8	3359	114
Feb-99	57.2	2754	104	Feb-99	48.7	2847	109
Mar-99	52.3	2461	106	Mar-99	53.0	3363	202
Apr-99	89.9	5785	120	Apr-99	74.2	6292	336
May-99	399	58597	140	May-99	329	54283	1426
Jun-99	870	37865	185	Jun-99	945		1791
Jul-99	516	11684	564	Jul-99	598		632
Aug-99	535	20531	1160	Aug-99	526	25445	1316
Sep-99	198	7540	338	Sep-99	213	9991	495
Oct-99	122	4581	183	Oct-99	125	6062	29
Nov-99	98.1	6270	185	Nov-99	83.6	5084	203
Dec-99	89.6	6335	175	Dec-99	62.6	4100	183
Jan-00	74.3	4661	133	Jan-00	46.5	2778	126
Feb-00	67.3	3448	103	Feb-00	53.5		126
Mar-00	64.2	2734	104	Mar-00	57.8		181
Apr-00	126	3637	204	Apr-00			319
May-00	462	7961	872	May-00	468	8285	875
Jun-00	590 272	5995	558	Jun-00	581	5744	489
Jul-00	273	1726	53	Jul-00	282	3442	55
Aug-00	162 136	1577	120	Aug-00	157	1549	138
Sep-00		1990	108	Sep-00	128	2289	135
Oct-00	103	1816	84	Oct-00	86.3	1993	98
Nov-00	76.0	2459	63	Nov-00	54.2	1902	69
Dec-00	65.9	2736	57	Dec-00	48.6	2057	68
Jan-01	63.4	2782	84	Jan-01	50.0	2357	88
Fęb-01	54.4	2180	70	Feb-01	46.2	2008	77
Mar-01	51.5	1496	77	Mar-01	42.3	1790	73
Apr-01	77.8	1678	124	Apr-01	59.4	2062	103
May-01	376	6089	591	May-01	331	8214	533
Jun-01	547		439	Jun-01	540	6508	400
Jul-01	361	3811	241	Jul-01	369	5175	252
Aug-01	165	2667	156	Aug-01	193		209
Sep-01	130	2281	118	Sep-01	136	2931	147
Oct-01	96.0	1906	86	Oct-01	104	2482	116
Nov-01	67.0	2144	51	Nov-01	61.6	2166	74
Dec-01	58.9	2310	44	Dec-01	32.7	1432	43
Jan-02	49.2	2561	60	Jan-02	29.7	1503	39
Feb-02	42.1	2083	46	Feb-02	30.9	1437	37
Mar-02	38.7	1072	54	Mar-02	33.8	1278	57
Apr-02	66.0		79	Apr-02	65.3		104
May-02	138	1963	115	May-02	137		128
Jun-02	195	1823	158	Jun-02	215	2394	178

 Source:
 TDS Consulting Inc. (2004b); monthly/annual D-TMs load summaries, sites CC-40 and CC-60.

 Period of Record (POR): 10/94-9/04
 10 years (120 months); 42 pre-Argo vs. 78 post-Argo.

	Period of I	Record (PO	R): 10/94-9	10 years (120 months); 42 pre-Arg	jo vs. 78 po
CC-60:		Loadings (lbs/mo)	CC-40	(cfs)	Loadings (lbs/mo)
Mo-Yr	Flow	D-Zn #	D-Cu #	Mo-Year	Flow	D-Zn #	D-Cu #
Jul-02	86.7	579	72	Jul-02			88
Aug-02	59.3	385	49	Aug-02		1257	73
Sep-02	48.2	580	44	Sep-02	61.3	754	58
Oct-02	51.5	857	52	Oct-02			99
Nov-02	36.8	1166	33	Nov-02	38.7	1551	64
Dec-02	26.6	1049	24	Dec-02	29.6	1394	51
Jan-03	28.0	1113	26	Jan-03	26.1	1414	38
Feb-03	24.5	884	21	Feb-03	25.8	1281	33
Mar-03	40.3	2115	57	Mar-03	35.5	5317	102
Арг-03	131	6314	196	Apr-03	85.2	9598	217
May-03	437	11898	687	May-03	420	12832	681
Jun-03	887	12624	911	Jun-03	912	13696	984
Jul-03	· 361	3204	127	Jul-03			293
Aug-03	156	1157	104	Aug-03	E Contraction of the second se		184
Sep-03	138	2197	127	Sep-03			234
Oct-03	106	2287	109	Oct-03	103	3073	148
Nov-03	71.2	2532	60	Nov-03	67.9	2959	101
Dec-03	65.1	2618	54	Dec-03	47.2	2289	74
Jan-04	59.4	2515	41	Jan-04		2305	72
Feb-04	58.4	2320	37	Feb-04			68
Mar-04	59.9	1887	80	Mar-04			75
Apr-04	92.6	2562	135	Apr-04			114
May-04	225	4365	441	May-04		4654	390
Jun-04	325	3177	311	Jun-04		3961	343
Jul-04	251	2959	224	Jul-04	1	4272	233
Aug-04	144	2258	168	Aug-04	1 1	3416	243
Sep-04	97.0	1577	95	Sep-04		2494	122
CC-60	Flow	D-Zn #	D-Cu #	CC-40	Flow	D-Zn #	D-Cu#
Pre-Argo	240	8847	463	Pre-Argo	248	10927	484
#months	42	42	42	#months	42	42	42
Pre-Argo, It		295	15.4	Pre-Argo,		364	16.1
Post-Argo	183	5112	198	Post-Argo	180	5602	263
#months	78	78	78	#months	78	78	78
Post-Argo, I	lbs/d	170	6.60	Post-Argo		187	8,75
Check Load		hese values	.):	Check Loa	adings (use t	hese values	5):
Pre-Argo		371571	19463		Load sum	458951	20343
#days (1278	8), lbs/d	291	15.2	#days (12	78), Ibs/d	359	15.9
Post-Argo		398712	15441		Load sum	436980	20481
#days (237	5), lbs/d	168	6.50	#days (23	75), Ibs/d	184	8.62

Source: TDS Consulting Inc. (2004b); monthly/annual D-TMs load summaries, sites CC-40 and CC-60. Period of Record (POR): 10/94-9/04 10 years (120 months); 42 pre-Argo vs. 78 post-Argo. ost-Argo.

Source: TDS Consulting Inc. (2004). Note: 2004 TMs load addendum, completed for CCWF.

Start Title Title <th>River Turner under et and Biver 17 (b) The first of t</th> <th></th> <th>Description</th> <th>Barlo Reduction</th> <th>RSQ</th> <th>Reduction bad Re</th> <th>Bad Reduction Bad Reduction (see Reduction (include % entrovels)</th>	River Turner under et and Biver 17 (b) The first of t		Description	Barlo Reduction	RSQ	Reduction bad Re	Bad Reduction Bad Reduction (see Reduction (include % entrovels)
Unity data with the state of the state o	Waren Samuella Million Marchis Marchis <t< td=""><td></td><td>Aller</td><td>(West to east)</td><td>4</td><td>Carbon Cognetic 1</td><td>Not considered in Fraeet-1 31-4</td></t<>		Aller	(West to east)	4	Carbon Cognetic 1	Not considered in Fraeet-1 31-4
Strend Billing Table Mile Table Table Mile <td>Strend by the main of the</td> <td></td> <td>Giver Piume Mine Letter: D. J. Mine</td> <td>B/U</td> <td></td> <td></td> <td></td>	Strend by the main of the		Giver Piume Mine Letter: D. J. Mine	B/U			
Turning for the second	Tarticle Miles International Constraints International Constraints International Inter	,			10		
strugger mis in a manual method with the set of the set	strugger fragment fra		Terriste Reise				
Burnel All March All Marc	Burley Burley Burley Burley Burley Burley Burley Burley Burley Burley Burley Metrodos Amas - Stream Segment 2 (upper) Amas - Stream Segment 2 (upper) Amas - Stream Segment 3 (upper) Amas - Stream Segment 3 (upper) Amas - Stream Segment 5 (upper) Amas - West Fort, Clear Check (near Empire) Amas - Mes - Mes Fort, Clear Check (near Empire) Amas - Mes - M					5	
Americalis Table Table Table Table Americalis Americalis Stream Segment 5 Stream Segment 5 Americalis Denomination 2 3 3.0003 Americalis Denomination 2 3 3.0003 Americalis Denomination 3 3.0003 3.0003 Americalis Denomination 3 3.0003 3.0003 Americalis Denomination 0.000 0.003 1.2 Americalisters Table 1.00 1.0 1.2 Americalisters Table 0.003 1.2 1.2 Amoricalister Table 0.003 1.2 1.2 Americalisters Table	Methods Main Main Main Area Stream Segment Juny Main Main Main Area Stream Segment Strend Disnond Mine 7 9 0.0009 Area Stream Segment Strend Stream Segment Strend Stream Segment Strend Main Area Stream Segment Strend Stream Segment Strend Stream Segment Strend Main Area Stream Segment Strend Stream Segment Strend Stream Segment Strend Main Area West Fork Clear Creek (near Empire) Stream Segment Strend Main District Strend District Strend Stream Segment Strend Main District Strend Main Main Main Main District Stream Main Main Main Main District Strend Main Main Main Main District Strend <td></td> <td></td> <td></td> <td></td> <td>44</td> <td></td>					44	
Area 2:: Street Furne Area (vertif treast) Streat: Segment 2 (upber) Burnelof Mine 7 7 00009 Area 2:: Street Furne Area (vertif treast) Streat: Segment 2 (upber) 20.81 Burnelof Mine 7 7 00009 Area 3:: Studt Fork Clear Creek (new Empire) Stream Segment 5 00009 Area 5:: Studt Fork Clear Creek (new Empire) Stream Segment 5 00009 Area 5:: Studt Fork Clear Creek (new Empire) Stream Segment 2 (upper) 00009 Area 5:: Studt Fork Clear Creek (new Empire) Stream Segment 2 (upper) 00009 Area 5:: Studt Fork Clear Creek (new Empire) Stream Segment 2 (upper) 00000 Area 5:: Studt Fork Clear Creek (new Empire) Stream Segment 2 (upper) 0000 Area 5:: Studt Fork Clear Creek (new Empire) Stream Segment 2 (upper) 0000 Area 5:: Studt Fork Clear Creek (new Empire) 0.000 0.00 0.1 Area 5:: Commonwealth Nia Nia Nia Nia Area 5:: Commonwealth Nia Nia Nia Nia <td< td=""><td>Area 2: Stream Segment 2 (upter) Burdigh Turnel 0.0003 Burdigh Turnel 0.0003 Area 2: Stream Segment 3 Burdigh Turnel 0.0003 Area 2: Stream Segment 3 Area 3: Stream Segment 5 Area 4: Stream Segment 5 Area 4: Stream Segment 5 Area 5: Scotth Fork Clear Creek (mar Empire) Diberts Small Stream Segment 5 Area 5: Scotth Hould and 5 Area 5: Scotth 7 Area 5: Scotth Hould and 7 Area 5: Scotth 7 Area 7: Scotth 7 <td></td><td></td><td></td><td></td><td>67 C</td><td></td></td></td<>	Area 2: Stream Segment 2 (upter) Burdigh Turnel 0.0003 Burdigh Turnel 0.0003 Area 2: Stream Segment 3 Burdigh Turnel 0.0003 Area 2: Stream Segment 3 Area 3: Stream Segment 5 Area 4: Stream Segment 5 Area 4: Stream Segment 5 Area 5: Scotth Fork Clear Creek (mar Empire) Diberts Small Stream Segment 5 Area 5: Scotth Hould and 5 Area 5: Scotth 7 Area 5: Scotth Hould and 7 Area 5: Scotth 7 Area 7: Scotth 7 <td></td> <td></td> <td></td> <td></td> <td>67 C</td> <td></td>					67 C	
Burliegh Turnel 7 7 0.0003 Burliegh Turnel 20.00 20.00 20.00 Burliegh Turnel 20.00 20.00 20.00 Dibberts Simility 20.00 20.00 20.00 Diberts Simility 20.00 20.00 20.00 Arris Simolity 20.00 20.00 20.00 Arris Sinters 20.00 20.00 20.00 Arris Sinters 20.00 20.0	Burklingh Turnel Burklingh Turnel Burklingh Turnel Burklingh Turnel Burklingh Turnel Burklingh Turnel Burklingh Turnel Burklingh Turnel Burklingh Turnel Dibberts Similate Dibberts Similate Dib	-	After 7 - Sther Dinne Area (un	et hvæmf.		Etream Sament 2 (100ar	
Description 0.0003 0.0003 0.0003 Area 5 - Secth Fork Clear Creek (near Empire) 7 7 0.0003 Area 5 - Secth Fork Clear Creek (near Empire) 7 7 7 0.0003 Area 5 - Secth Fork Clear Creek (near Empire) 2 7 7 7 1 Area 6 - West Fork Clear Creek (near Empire) 2 5 7 7 1 Area 7 - West Fork Clear Creek (near Empire) 2 5 4 4 Area 7 - West Fork Clear Creek (near Empire) 2 5 4 4 Area 7 - West Fork Clear Creek (near Empire) 2 2 4 4 Area 5 - Complement Direk (not else provious) 2 4 4 4 Area 5 - Complement Direk (not else provious) 2 4 4 4 Area 5 - Complement Direk (not else provious) 0 0 0 4 4 Area 5 - Complement Direk (not else provious) 0 0 0 1 1 Area 5 - Complement Direk (not else provious) 0 0 0 1 1 Area 5 - Complement Direk (not else provious) 0 0 0 1 1 Area 5 - Complement Direk (not else provious) 0 0 0 1<	Distriction 7 7 0.0003 Area 5 - Scuth Fork Clast Creek (rear Empire) 7 7 9 0.0003 Area 5 - Scuth Fork Clast Creek (rear Empire) 7 7 7 9 0.0003 Area 5 - Scuth Fork Clast Creek (rear Empire) 5 7 9 0.0003 Area 4 - West Fork Clear Creek (rear Empire) 5 7 43 4 Area 4 - West Fork Clear Creek (rear Empire) 5 7 43 4 Area 4 - West Fork Clear Creek (rear Empire) 5 7 4 4 Area 1 - West Fork Clear Creek (rear Empire) 0.003 12 4 4 Area 1 - West Fork Clear Creek (rear Empire) 0.003 12 4 4 Area 1 - Mest Fork Clear Creek (rear Empire) 0.003 12 4 4 Area 5 - Scongetown-Loridan's Strater 10 12 4 4 Area 5 - Scongetown-Loridan's Strater 10 0.003 12 12 Area 5 - Scongetown-Loridan's Strater 11 12 12 12 Area 5 - Scongetown-Loridan's Strater 11 12 12 12 Area 5 - Scongetown-Loridan's Strater 11 12 12 12 Area 5 - Scongetown-Lin 10 </td <td></td> <td>Fundary Tinnas</td> <td>10000 01 10</td> <td></td> <td></td> <td>Estimated from a camples ("tasks 2/4 Table 2-0), confirm 14/6 / ausie (1007, 2000)</td>		Fundary Tinnas	10000 01 10			Estimated from a camples ("tasks 2/4 Table 2-0), confirm 14/6 / ausie (1007, 2000)
Anivolution milling 7 7 0.0003 Particular milling 7 10 10 Weldorf Mine 5 5 5 Weldorf Mine 5 5 5 Weldorf Mine 5 5 5 Ansat Turnel (Mine discharted) 0.83 11 Ansat Turnel (Mine discharted) 0.83 12 4 Ansatz Turnel (Mine discharted) 0.83 12 10 Ansatz Turnel (Mine discharted) 0.83 12 10 Ansatz Turnel (Mine discharted) 0.83 12 10 Ansatz Turnel (Mine discharted) 0.003 12 12 Ansatz Turnel (Mine discharted) 0.003 0.003 12 Ansatz Turnel (Mine discharted) 0.003 0.003 12 Ansatz Turnel (Mine discharted) 0.003 0.01 1 Ansatz Turnel (Mine discharted) 0.003 0.03 12 <td< td=""><td>Animum 7 7 0.0003 Animum 20000 20000 20000 Particle 20000 20000 20000 Particle 20000 20000 20000 Particle 20000 20000 20000 Particle 20000 20000 20000 Vision Claim 20000 20000 Area Vision 20000 20000 Area Vision 20000 20000 Area Claim 20000 20000 Area Claim</td><td></td><td></td><td></td><td></td><td>10.02</td><td>Language and the section of the sect</td></td<>	Animum 7 7 0.0003 Animum 20000 20000 20000 Particle 20000 20000 20000 Particle 20000 20000 20000 Particle 20000 20000 20000 Particle 20000 20000 20000 Vision Claim 20000 20000 Area Vision 20000 20000 Area Vision 20000 20000 Area Claim					10.02	Language and the section of the sect
Antropy runnel Arres 5- Scoth Fork Clear Creek (near Empire) Stream Segments 3a/3b Arres 5- Scoth Fork Clear Creek (near Empire) Stream Segments 3a/3b Arres 5- Scoth Fork Clear Creek (near Empire) Stream Segments 3a/3b Arres 5- Scoth Fork Clear Creek (near Empire) Stream Segments 3a/3b Arres 5- Scoth Fork Clear Creek (near Empire) Stream Segments 5 Arres 4- Vest Fork Clear Creek (near Empire) Stream Segments 5 Arres 5- Scoth Fork Clear Creek (near Empire) Stream Segments 7 Arres 5- Scoth Fork Clear Creek (near Empire) Stream Segment 2 (lower) and 2b Arres 5- Goorgeform-to-Idiaty Stripts (Incl. thbuttartes) Arres 7 Arres 5- McClelland Turnel Na Arres 6- McClelland Turnel 0.003 Arres 6- McClelland Turnel 0.003 Arres 6- McClelland Turnel 0.003 Arres 7- Mitta Clearyon Structure 0.003 Arres 7- Marres Clear Clear Creek (Incl. thbuttartes) 0.1 Arres 7- Marres Clear Clear Creek (Incl. thbuttartes) 0.003 Arres 7- Marres Clear (Antry Turnel Antry Turnel Antry Turnel Mer 5- Scoth Fort Clear Creek (near Empire) Mer 1- Twee Fort Clear Creek (near Empire) Dibbers Smaler Antra 5- Scoth Fort Clear Creek (near Empire) Mer Turnel (Mine discharzo) Mer Turnel (Mine discharzo) Mine discharzo) Mer Turnel (Mine discharzo) Mine disc			c	c		ive province and we are also in the transferration of the second statement of
Area Stream Segments Area - West Fork Clear Creek (near Empire) Stream Segments Obbins Dibbins Stream Segments Dibbins Stream Segments Stream Segments Dibbins Stream Segments Stream Segments Area - West Fork Clear Creek (near Empire) Stream Segments Area - West Fork Clear Creek (near Empire) Stream Segments Area - West Fork Clear Creek (near Empire) Stream Segments Area - West Fork Clear Creek (near Empire) 0.83 Minnoshin nia nia nia Mastell Russell Turnel	Area S Scuth Fork Clear Creek (rear Empire) Stream Segments Vasidor Mine Dibbens Smaller Dibbens Smaller Stream Segment 5 Area 4 - West Fork Clear Creek (rear Empire) Stream Segment 5 Area 4 - West Fork Clear Creek (rear Empire) Stream Segment 5 Area 4 - West Fork Clear Creek (rear Empire) Stream Segment 5 Area 4 - West Fork Clear Creek (rear Empire) Stream Segment 5 Area 1 - West Fork Clear Creek (rear Empire) Stream Segment 2 (ower) and 6 Minnackin Name (withe discretary) Stream Segment 2 (ower) and 6 Minnackin Name (reach reach re	5	Astroy Lumei Gennot			0,000	Essimered mort i Service (185Ks 2/4 185ks 2/4) 200 1/293 1N 1080 (LEWIS, 2003). No noist-course data are known in aviet
Weidorf Mine Winscritt Mine Amas 4 - Wei Front Clear Creat Empire) Stream Segment 5 Amas 4 - Wei Front Clear Creat (near Empire) Amas 1 - Mar (Mine (des pravious) Amas 1 - Mar (des mar mar (de	Weidorf Mine Weidorf Mine Minacata Mine (dee previous) Area Torker (near Empire) Stream Segment 5 Area Torker Minacata Mine (dee previous) Area Torker Minacata Mine (dee previous) Area Torker Minacata Mine (dee previous) Area Torker Area To	18	Are 3 - South Fork Clear Cree	K/Leavenworth Creek		Stream Seaments 3a/3b	Not addressed in this Phase-1 319
Dibbents Smeller. Charact Smeller. Stream Segment 5 Lan Creak (rear Empire) 0.83 4 43 Antra Turnel (Mine discharge) 0.83 4 43 Minnesota Mine (see previous) 0.83 4 43 Minnesota Mine (see previous) 0.83 4 43 Minnesota Mine (see previous) 0.83 4 43 Arres 5 - Georgebown bo-fidero Springs (incl. tributarets) 0.83 12 12 Arres 5 - Georgebown bo-fidero Springs (incl. tributarets) 0.83 12 13 Masshall Russell Turnel n/a n/a n/a 12 Masshall Russell Turnel n/a n/a n/a 12 Masshall Russell Turnel n/a n/a n/a 10 Masshall Russell Turnel n/a n/a n/a 10 Masshall Russell Turnel n/a n/a 12 10 Masshall Russell Turnel n/a n/a 12 10 Masshall Russell Turnel 0.000 0.003 12	Dibbens Smeller. Stream Segment 5 Jens 4 - West Fort Clear Creek (rear Empre) Stream Segment 5 Jenn scrab Mine (see previous) Jens 4 - West Fort Clear Creek (rear Empre) Jens 5 Minnescab Mine (see previous) Jens 5 Jens 4 Jens 4 Minnescab Mine (see previous) Jens 7 Jens 7 Jens 7 Marinel Mine (see previous) Jens 7 Jens 7 Jens 7 Mashell Russell Turnel Jens 7 Jens 7 Jens 7 Amor Scients Russell Jens 7 Jens 7 Jens 7 Amor Scients Russell Jens 7 Jens 7 Jens 7 Amor Scients Russell Turnel Job 3 Jens 7 Jens 7 Amor Scients Russell Turnel Job 3 Jens 7 Jens 7 Amor Scient Russell Turnel Job 3 Jens 7 Jens 7 Marchal Risters Jens 7 Jens 7 Jens 7		Weldorf Mine				
Area 4 - West Fork Clear Creek (near Empire) Stream Segment 5 Minnacke Wine (see pravious) Stream Segment 5 Marstel Fork Clear Creek 0.83 4 Area 5 - Georgetown belaxons na na Marstel Russell Turnel na na M	Area 4 – West Fork Crear Creek (near Empire) Stream Segment 5 Lips Creek Minneds Mine (see previous) 0.83 [1 4 [1 2] Water Fork (rear Empire) 0.83 [1 4 [1 2] Water Fork (rear Empire) 0.83 [1 2] Water Fork (rear for thur area Manual for the form of the		Ditbens Smelter				Spectify later in Phase II investigations.
Minnesca Mine (willing desprevious) Avera Trume ((Mine (ster previous) Avera Trume ((Mine (ster previous) Avera Trume ((Mine (ster arbutares)) Areas Fork Clear Creek. Areas Commenter Fork (Creek 12, 7, 12, 7, 12, 7, 12, 12, 7, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12	Minnesca Mine (ale previous) Agria Turme (Mine (see previous) Antra Turme (Mine (see previous) Area 5 – Goler Creek, Area 5 – Moles Turnel Area 6 – Moles Turnel Area 6 – Moles Turnel Area 7 – Mole Montonesta Area 6 – Moles Turnel Area 6 – Moles 1 – Moles 7 – Mole Area 6 – Moles 1 – Moles 7 – Mole Area 6 – Moles 1 – Moles 7 – Moles 7 – Mole Area 6 – Moles 1 – Moles 7 –	¥	Area 4 - West Fork Clear Cree	k (near Empire)		Stream Sagment 5	Not consider Henderson Mine
Murrasota Minie (alee pravious) Mara Tumei (line (ale pravio (ale pravious) Mara Tumei (line (ale pravious) Mara Tumei (ale	Murrasota Minnesota Minnes		Lion Creek				Estimated from 2 samples (Lewis, 1995) - see Table 2-2 (Tasks 3/4).
Wast Turnel (Minde discharge) 0.83 4 43 Wast Turnel (Minde discharge) 0.83 4 4 Area 5 - Georgetown 4b (datho Springs (Incl. tributaries) 5 Iream Segment 2 (lower) and 0b Ama 5 - Georgetown 4b (datho Springs (Incl. tributaries) 5 Iream Segment 2 (lower) and 0b Ama 5 - Georgetown 4b (datho Springs (Incl. tributaries) 5 Iream Segment 2 (lower) and 0b Amarchal Russell Turnel na na Amarchal Russell Turnel na na Amarchal Russell Turnel na na Bellweiv Hudson na na Amarchal Russell Turnel na 0.005 0.003 Amarchal Russell Turnel na 0.005 0.003 Amarchal Russell Turnel na 0.003 0.003 Rido Signor Viele (Fall River) 0.003 0.023 0.03 Amarchan Sister 0.003 0.003 0.01 Rido Signor Viele (Fall River) 0.003 0.023 0.3 Rido Signor Viele (Fall River) 0.003 0.03 0.3 Amarchan Sister 0.003 0.03 0.3	American States 0.83 4 43 American States 0.83 4 44 American States 1.2 1.2 American States 1.2 0.003 1.2 American States 1.2 0.003 1.2 American States 1.2 0.003 1.2 American States 1.3 0.003 0.3 McColleland Turmel 1.4 0.003 0.3 McColleland Turmel 0.001 0.003 1.2 McColleland Turmel 0.001 0.003 1.2 McColleland Turmel 0.003 0.34 0.4 McColleland Turmel 0.003 0.03 1.2 McColleand Turmel 0.003 0.03 1.2 McColleand T		Minnesota Mine (see previous)				Estimated from 1 sample (CDPHE, 1995) - see Table 2-2 (Tasks 3/4).
Anglo Saxon Na Stream Segment 2 (ower) and 6b Anglo Saxon Na Na Anshall Russell Turnel Na Na Anshall Russell Na Na Anschall Russell Na Na Anschall Russell Na Na Anstructure Na Na Anschall Russell Na 0.005 Anschall Russell 0.003 0.1 McColelland Turnel 0.003 0.1 Anschall Russell 0.003 0.03 McColeland Turnel 0.003 0.1 McColeland Turnel 0.003 0.1 McStorent Hit 0.003 0.1 McStorent Hit 0.003 0.1 McStorent Hit<	Angle Saxon Na Angle Saxon Na Na Angle Saxon Na Na Na Na Marshall Runnel Na Na Na Na Marshal Runsel Na Na Na Na Beliview Hudson Na Na Na Na Marshal Runsel Na Na Na Na Americal Sters Na Na Na Na Motob Ne Na Na Na Machinal Runnel Na Na Na Na Machinal Runnel Na 0.003 0.003 1.2.7 Mass Resolution Rotation 0.003 0.012 0.03 1.2.7 Machina Runn 0.003 0.013 0.012 0.03 1.2.7 Mass Resolution Rotation 0.003 0.012 0.012 0.012 Mass Resolution Rotation 0.003 0.012 0.012 0.012 Mass Resolution Rotation 0.003 0.012 0.012 0.012 <tr< td=""><td>_</td><td>Aorta Tunnel (Mine discharge)</td><td></td><td></td><td>-</td><td>Estimated from 2 samples (USEPA, 1994; CDPHE, 1995) see Table 2-2 (Tasks 3)</td></tr<>	_	Aorta Tunnel (Mine discharge)			-	Estimated from 2 samples (USEPA, 1994; CDPHE, 1995) see Table 2-2 (Tasks 3)
Anges s- contraction Strugg (no. molecular and a mile mile mile mile mile mile mile mile	Angie Saevender Ander Strugs (n		WEST FOR CLOSE CLEEK	0.00	+		
Commonweach Amarshal Russell Turmel Marshal Russell Turmel Marshal Russell Turmel Marshal Russell Turmel Amarshal Russell Turmel Amarshal Russell Turmel Amarshal Russell Amarshal Russell Turmel Amarshal Russell Amarshal Russell Amarshal Russell Amarshal Russell Amarshal Russell MicColland Turmel MicColland Turmel MicColland MicColland Turmel MicColland MicColland MicColland MicColland MicColland MicColland MicColland MicColland MicColland MicColland MicColland Miccoll	Commonweah na na na na Marshal Russel Turnel na na na na Marshal Russel Turnel na na na na Service Berynyldson na na na Jerkwr Hudson na na na na American Sisters na na na na American Sisters na na na na Mocolelland Turnel na 0.003 na na McCleloland Turnel na 0.003 0.03 12.7 Rockrond Turnel 0.003 0.03 0.03 13.7 Miss Codwritiner 0.003 0.03 0.03 17.3 Miss Codwritiner 0.003 0.03 1.1 1.0 Miss Codwritiner 0.003 1.8 17.3 17.3 Miss Codwritiner 0.003 1.8 17.3 17.3 Miss Codwritiner 0.003 1.8 17.3 Miss Co		After & - Georgecown-to-Idiano	springs (incl. moutane	<u> </u>	stream segment 2 (lower)	
Merchantic Markentin na	Morrican States Truniel na		Anglo Sakon	n/a	n/a	n/a	No point-source date are known to exist,
Marshall Russel Turnel na	Marshali Russeli Turnel na		Commonwealth	ri/a	п/а	B/U	No point-source data are known to exist,
Beliview Hudson ria na	Beliview Hudson na har	ĺ	Marshail Russell Tunnel	n/a	n/a	n/a	No point-source data are known to exist.
Joe Reynolds nia MacDelland Turmel area MacDelland Turmel (12.7 MacDelland	Joe Reynolds na sisters na ha ha hat but turnel Sisters na ha hat but but but but but but but but but bu		Beliview Hudson	n/a	n/a	D/18	No point-source data are known to exist.
American Sisters na na na na Nacob Nacob na 0.003 na na Netschert Turmel na 0.005 0.003 12.7 Netschert Turmel na 0.003 0.03 12.7 Netschert Turmel 0.010 0.003 0.03 0.4 Reckford Turmel 1.003 0.03 0.4 12.7 Allzo Slany Hole (Fall River) 0.003 0.03 0.04 0.4 Allzo Slany Hole (Fall River) 0.003 0.03 0.04 0.4 Allzo Slany Hole (Fall River) 0.003 0.03 0.03 0.4 Allzo Slany Hole (Fall River) 0.003 0.03 0.01 0.0 Allzo Slany Hole (Fall River) 0.003 0.03 0.01 0.0 Allzo Slany Hole (Fall River) 0.003 0.03 0.01 0.0 Allzo Slany Hole (Fall River) 0.003 0.03 0.01 0.0 Allzo Slany Hole (Fall River) 0.003 0.03 0.01 0.0 Allzo Slany Hole 0.000 0.003 0.01 0.0 Allzo Slany Hole 0.000 0.012 0.03 0.0 Migginia Canyon SW-GW/ LF 0.005 <td< td=""><td>American Sisters na Macobo Nacobo Netsolo Netsolo Netsolo Netsolo Netsolo Netsolo Netsolo Netsolo Netsolo American Sisters na Netsolo Netsolo American Sisters na Alles Glany Hole (Fall River) Alles Cordownstream Trail Ck Alles Cordown Stream Segment 2 (Jower-part cordown Cordown Stream Segment 2 (Jower-part cordown Cordown Stream Segment 2 (Jower-part cordown Cordown Stream Segment 2 (Jower-part cordown Craste Shaft Undarts and King Cordown Stream Segment 2 (Jower-part cordown Cordown Stream Stream Stream Segment 2 (Jower-part cordown Cordown Stream Stream Stream Stream Segment 2 (Jower-part cordown Cordown Stream Strea</td><td></td><td>Joe Reynolds</td><td>D/B</td><td>n/a</td><td>n/8</td><td>No point-source data are known to exist.</td></td<>	American Sisters na Macobo Nacobo Netsolo Netsolo Netsolo Netsolo Netsolo Netsolo Netsolo Netsolo Netsolo American Sisters na Netsolo Netsolo American Sisters na Alles Glany Hole (Fall River) Alles Cordownstream Trail Ck Alles Cordown Stream Segment 2 (Jower-part cordown Cordown Stream Segment 2 (Jower-part cordown Cordown Stream Segment 2 (Jower-part cordown Cordown Stream Segment 2 (Jower-part cordown Craste Shaft Undarts and King Cordown Stream Segment 2 (Jower-part cordown Cordown Stream Stream Stream Segment 2 (Jower-part cordown Cordown Stream Stream Stream Stream Segment 2 (Jower-part cordown Cordown Stream Strea		Joe Reynolds	D/B	n/a	n/8	No point-source data are known to exist.
Natorb Micclelland Turmel na na na Micclelland Turmel 0.005 0.003 1.2 NFS, McClelland Turmel 0.003 1.2 1.2 Micclelland Turmel 0.003 1.2 1.2 Alles Sland Turmel 0.003 0.03 1.2 Alles Sland 0.010 0.03 0.04 0.4 Alles Sland 0.004 0.01 0.04 0.4 Alles Sland 0.003 0.03 0.01 0.04 0.4 Mins Creekt - LF 0.003 0.03 0.233 0.9 0.9 0.4 Alms Dump Mins Infrast 0.003 0.033 0.233 0.9 0.9 0.4 0.6 0.	Natorb McClelland Turnel na na na 1.2 McClelland Turnel 0.005 0.003 1.2 1.2 NFS, McClelland Turnel 0.005 0.003 1.2 1.2 Alles Gland Turnel 0.005 0.003 1.2 1.2 Trail Creek - LF 0.002 0.004 0.4 1.2 Miss Clower Ler 0.003 0.03 1.2 1.0 Miss Codematineam Trail Ck 0.003 0.233 0.9 1.0 Alma Duffo 0.003 0.033 0.233 0.9 1.1 Alma Duffo 0.003 0.033 0.3 1.1 1.0 1.0 Alma Duffo 0.003 0.033 0.3 1.8 0.1 1.1 1.0 Alma Duffo 0.003 0.033 0.033 1.8 0.1 1.1 1.0 Alma Duffo 0.003 0.035 1.8 0.03 1.73 0.9 1.11 Mission Commutating Comyon Stivecow, LF 0.055 1.8<		American Sisters	n/a	n/a	n/n	No point-source data are known to exist.
MicClelland Turmel 0.005 0.003 1.2 NFS, MicClelland Turmel 0.010 0.003 1.2 Reactional Turmel 0.010 0.003 0.4 Reactional Turmel 0.003 0.03 1.2 Reactional Turmel 0.003 0.03 0.4 Reactional Turmel 0.003 0.03 0.4 Trail Creekt - HF 0.16 0.003 0.4 Alma Dump 0.000 0.01 0.01 1.0 Alma Dump 0.000 0.003 0.233 0.9 1.1 Alma Dump 0.000 0.003 0.233 0.9 1.10 1.0 Alma Dump 0.000 0.003 0.033 0.233 0.9 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11	MicClelland Turmel 0.005 0.003 1.2 NFS, McClelland Turmel 0.010 0.003 1.2 NFS, McClelland Turmel 0.010 0.003 1.2 Rockford Turmel 0.010 0.003 0.4 Rockford Turmel 0.003 1.2 0.4 Trait Creekt - HF 0.003 0.03 0.4 Mill Creekt - HF 0.014 0.01 0.01 Alms Dump 0.003 0.03 0.23 0.9 Big Five Turnel 0.16 0.03 0.23 0.9 Alms Dump 0.003 0.03 0.12 0.04 1.0 Alms Dump 0.003 0.03 0.23 0.9 0.4 Alms Dump 0.003 0.03 0.12 0.07 1.0 0.1 Alms Dump 0.003 0.03 0.23 0.12 0.09 0.1 Alms Dump 0.003 0.03 0.03 0.12 0.09 0.1 Alms Dump 0.003 0.03 </td <td></td> <td>Nahob</td> <td>nía</td> <td>e/u</td> <td>alc</td> <td>No mini-source date are known to exist</td>		Nahob	nía	e/u	alc	No mini-source date are known to exist
Main Schort Turmei aree 0.010 -0.03 12.7 Rockford Turmei aree 0.010 -0.03 12.7 Rockford Turmei aree 0.010 -0.03 12.7 Rockford Turmei aree 0.002 0.003 12.7 Allas Glory Hole (Fall River) 0.003 0.1 Allas Glory Trail Creekt. LF 0.016 0.03 12.7 Trail Creekt. LF 0.035 0.01 0.0 Allas Dump 0.030 0.01 0.0 0.0 Allas Dump 0.003 0.03 0.13 5.5 Virginia Carryon Structure events) 0.03 0.13 5.5 Virginia Carryon Structure 0.055 4.9 17.1 Corwn Foirt & Virginia Carryon Structure 0.05 4.8 9.11 Virginia Carryon Structure 0.05 4.8 9.11 17.3 Millams affer Turmei 0.05 4.8 9.11 17.3 Millams affer Turmei 0.05 4.8 9.11 17.3 Millams affer Turmei	Micro Glany Hole (Fall River) 0.003 0.2 Micro Glany Hole (Fall River) 0.002 0.003 12.7 Micro Glany Hole (Fall River) 0.002 0.003 12.7 Micro Glany Hole (Fall River) 0.002 0.003 12.7 Micro Glany Hole (Fall River) 0.003 0.011 0.03 Micro Glany Hole (Fall River) 0.003 0.012 0.03 Micro Schwartneam Trail Cick 0.003 0.012 0.03 Micro Schwartneam Trail Cick 0.003 0.012 0.03 Micro Schwartneam Christopol 0.003 0.012 0.03 Mires Corowartneam Christopol 0.003 0.012 0.03 Mires Corowartneam Christopol 0.003 0.012 0.012 Mires Corowartneam Mire 0.003 0.012 0.012 Mires Corowartneam Mire 0.003 0.012 0.012 Mire		MeClelland Turnel				THERE CONDAM TAKE & 2-47h
NFS, McClelland Tunnel area 0.010 -0.03 12.7 Alles Glond Tunnel 0.004 0.04 0.4 Alles Glond Tunnel 0.002 0.004 0.4 Alles Glond Tunnel 0.002 0.004 0.4 Alles Glond Tunnel 0.001 0.017 1.0 Alles Glond File River) 0.000 0.017 1.0 File Greek - LF 0.000 0.013 3.6 2.5 Alma Dump Mins Dump 0.000 0.003 1.0 1.0 Alma Dump Mins Dump 0.000 0.003 0.233 0.9 1.10 Alma Dump Mins and Rio Grandwater 0.003 0.023 0.233 0.9 1.10 Alma Dump Mins and Rio Grandwater 0.003 0.033 1.83 1.10 1.10 Area E Wryting Carryon Structure reverts) 1.81 1.81 1.73 0.9 1.13 Virginia Carryon Structure reverts 0.05 1.83 1.81 1.73 1.73 1.73	NPS, McClelland Tunnel area 0.010 -0.03 12.7 Trail Creek - LF Elles Glant Tunnel 0.004 0.4 Alless Glant Tunnel 0.002 0.004 0.4 Alless Glant Tunnel 0.004 0.01 0.03 Trail Creek - LF 0.016 0.003 0.01 Miss Clant tunnel 0.013 0.01 0.01 Miss Clant tunnel 0.000 0.003 0.03 0.9 Miss Creation 0.000 0.003 0.012 23.6 24.9 Miss Creation 0.050 0.030 0.023 0.9 17.3 Miss Creation 0.050 1.83 0.12 0.09 17.1 Miss and Rio Grando 0.030 0.05 1.83 17.1 17.3 Virginia Carnon Silved.W., LF 0.05 1.83 6.17 17.3 Milatina Satton Silved.W. LF 0.05 1.83 6.17 17.3 Milatina Carnon Silved.W. LF 0.05 1.83 6.17 17.3 Milatina Carno			200			
Rockond Turnel Rockond Turnel Alles Gloyy Hole (Fall River) Alles Gloyy Hole (Fall River) Alles Colony Hole (Fall River) Alles Colony Hole (Fall River) Alles Colony Hole (Fall River) Alles Colony (Fall River) Alles Colon (Fall River) Alles Colony (Fall River) Alles Colon (Fall River) Alles Colony (Fall River) Alles Colon (Fal	Reckred Turnel 0.002 0.004 0.4 Alles Glory Hole (Fall River) 0.74 7.5 Trait Creek - HF 0.74 7.5 Alles Codomistream Trail Ck 0.000 0.01 1.0 Alms Dung Big Five Turnel 0.033 0.233 0.9 Big Five Turnel 0.033 0.233 0.9 Big Five Turnel 0.033 0.233 0.9 Big Five Turnel 0.033 0.12 0.9 Big Five Turnel 0.033 0.12 0.9 Area 5. Codomistream Trail Ck 0.000 0.12 0.9 Big Five Turnel 0.033 0.033 0.12 0.9 Area 5. Codomistream trail Ck 0.000 0.12 0.0 Big Five Turnel 0.033 0.033 0.12 0.9 Area 5. Codomistream trail Ck 0.000 0.012 0.0 Area 5. Codomistream trail Ck 0.000 0.12 0.0 Area 5. Codomistream trail Ck 0.000 0.12 0.0 Area 5. Codomistream trail Ck 0.000 0.12 0.0 Area 5. Codomistream trail Ck 0.000 0.012 0.12 0.0 Area 5. Codomistream trail Ck 0.000 0.		NPS. McClelland Tunne) area	0.010	-0.03		TtRMC (20040. Table 4.3-17b)
Mice Gloy Hole (Fall River) Mice Gloy Hole (Fall River) Trial Creek. LF Trial Creek. LF	Mice Glany Hole (Fall River) Mice Glany Hole (Fall River) Trail Creak. LF Trail Creak. L	_	Rockford Tunnel	0.002	0.094		THERME (20046, Table 4.3-17b)
Trail Creek - LF 0.74 7.5 Trail Creek - HF 0.13 0.01 1.0 Alma Duffy 0.01 0.01 1.0 Alma Duffy 0.00 0.03 0.233 0.9 Alma Duffy 0.000 0.033 0.233 0.9 Alma Duffy 0.000 0.033 0.233 0.9 Alma Duffy 0.000 0.033 0.12 5.5 Alma Duffy 0.000 0.033 0.12 5.5 Alma Duffy 0.000 0.033 0.12 5.5 Area E - Wrginia Canyon Groundwater 0.05 1.81 7.13 Virginia Canyon SW-GW, HF 0.05 1.81 7.13 Virginia Canyon SW-GW, HF 0.05 1.83 9.11	Trail Creek. LF 0.74 7.5 Trail Creek HF 0.13 3.6 28.9 Trail Creek HF 0.14 0.01 1.0 Alma Dung 0.03 0.03 0.233 0.9 Alma Dung 0.003 0.03 0.233 0.9 Miss Codomistream Trail Ck 0.003 0.233 0.9 Alma Dung 0.003 0.233 0.9 Niss Codomistream Chicago 0.033 0.233 0.9 Nighile Carryon Groundwater 0.035 1.13 5 Wrighile Carryon Stream Segment 2 (lower-part con Virginile Caryon Stream Segment 2 (lower		Alice Glory Hole (Fall River)				CDM/G remediation (not water)
Trait Creat. HF 0.14 3.6 22.9 NPS, CC downstream Trail Ck 0.000 0.01 1.0 Bg Five Tunnel 0.174 3.6 22.9 Br Five Tunnel 0.003 0.033 0.9 Bg Five Tunnel 0.003 0.033 0.9 NPS, CC downstream Chicagool 0.003 0.12 5.5 Ninghini Earnyon NV-GNY, LF 0.05 1.81 1.73 Virginia Canyon SW-GW, LF 0.05 1.81 1.73 Virginia Canyon SW-GW, LF 0.03 1.81 1.73 Virginia Canyon SW-GW, LF 0.03 1.81 1.73 Virginia Canyon SW-GW, LF 0.03 1.83 9.111 Virginia Canyon SW-GW, LF 0.03 1.83 9.111 Virginia Canyon SW-GW, LF 0.03 1.83 9.111 Corown Point & Virginia 0.03 1.83 9.111 Williams and RG Grands 0.03 1.83 9.111 Williams and RG Gran	Trait Creek. HF 0.74 3.6 22.9 NPS. CC downstream Trail Ck 0.00 0.01 1.0 Bg Five Tunnel 0.74 0.33 0.9 NPS. CC downstream Trail Ck 0.003 0.233 0.9 Bg Five Tunnel 0.003 0.333 0.9 NPS. CC downstream Trail Ck 0.003 0.12 55.5 NPS. CC downstream Chicagoo 0.030 0.12 57.3 NPS. CC downstream Chicagoo 0.030 0.12 57.3 NPS. CC downstream Chicagoo 0.030 1.11 10 NPS. CC downstream Provents 1.15 1.13 17.3 Virginia Canyon SW-GW, HF 0.05 1.41 17.3 Virginia Canyon SW-GW, HF 0.05 1.15 1.15 Virginia Canyon SW-GW, HF 0.05 1.15 17.3 Virginia Canyon SW-GW 1.16 0.05 1.15 Virginia Canyon SW-GW 1.16 0.05 1.15 Vi	4 Q	Trail Crask - 17	0,000	174	2 - 2 A	I imitari CDPHE /2 othari monitorror addad to 2005 ornoraro using also 4 samulas
NPS, CC downstream Trail Ck 0.000 0.01 1.0	NPS, CC downstream Trail Ck 0.000 0.01 1.0 1.0 Ama bump different trail Ck 0.000 0.03 1.0 1.0 Ama bump different trail Ck 0.003 0.03 0.12 2.0 1.0 Ama bump different trail Ck 0.003 0.03 0.12 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	10		114	25		Minter This Char Const interview with the Stream Somewhold by any and the support
Am Durownistream Internet, 2003 Am Durownistream Internet, 2003 American Commercian (2003) 0.033 Mrss. C. Wigning Carryon (groundwatter) 0.030 Area 6 Wigning Carryon structure, 0.050 Wigning Carryon SWA-GW, LF 0.05 Millarina Carryon SWA-GW, HF 0.05 Millarina Carryon SWA-GWA Millarina Carryon SWA-GWA Mil	The production of the product of the	-	NDC C Activities Trail CL	0000	200	- - - -	The provided the providence of
Big Five Tunnel Big Five Tunnel NFS. CC downstream Chicagoo Virginia Canyon (Broundwatter) Virginia Cangan (Broundwatter) Virginia Canyon (Broundwatter) Vi	Big Five Turnel Big Five Turnel MFS. CC downistream Chicago MFS. CC downistream Chicago Mirgins Carryon (groundwater/shurn events) Virgins Carryon (g		Alma Dumo	2000	20	÷.	
NPS, Cret fummer MPS, Cret fummer Area 6. – Vrghrie Cenyon (group 0.030 Vriginia Canyon SW-GW, LF Vriginia Canyon SW-GW, LF Vriginia Canyon SW-GW, LF Obti & Vriginia Crown Find Carrent Mindo Turnel Windo Turnel Windo Castla Shaft Upper Laka Windo Turnel Mindo Castla Shaft Upper Laka Trich Turnel Mindo Castla Shaft Upper Laka Mindo Castla Shaft Doves Nest Mine Erdda Turnel Fidda Turnel Bridta Turnel Bridta Doves Nest Mine Doves Mest Mine Doves Mest Mine Doves Mest Mine Doves Mest Mine Bald Eagle Mine Bald Eagle Mine	NPS, Cree furning MPS, Tree function MPS, Tree function Area 5 Wrythis Carryon (groundwatershorn events) (Wighina Carryon SW-GW, LF Williams and Rio Grandow Williams and Rio Grando Crown Pink & Virginia Crown Pink & V		Anna Vanjy Bio Eivo Timool	0,000	2000	-	the caller received to a 70%
Area C Waynie Canyon (groundwater source events) Area C Waynie Canyon ster (Groundwater) Virginie Canyon SW-Guv, HF 0.050 1.81 Virginie Canyon SW-Guv, HF 0.059 1.63 Willarine and Rio Grenda Comon Print & Virginia Castleton Mino Castleton Mino Windor Castle Shart Upper Lake Turmel Windor Castle Shart Upper Lake Turmel Februari Turmel Effe Turmel Bride Chann Mino Castle Shart Upper Lake Turmel Doves Nest Mine Doves Nest Mine Bride Eagle Mine Bride Eagle Mine Bride Eagle Mine	Area C Wrighie Carryon (groundwater south) Stream Segment Area C Wrighie Carryon Strondwater Wrighie Carryon Stweaw, LF 0.05 1, 18 Wrighie Carryon Stweaw, LF 0.05 1, 18 Wrighie Carryon Stweaw, LF 0.05 1, 18 Crown Point & Virginia Care Mine The Turnel Windor Catel Shaft Upper Lake Turnel Foptwal Turnel Foptwal Turnel Edition Mine Edition Mine		big Five (unne) NPS_CC downstream Chinann		-0.233		11-11-11-16(C (20044) 130)6 4.3-17) 17-17-164(C (20044) 130)6 4.3-17)
Virginia Canyon Groundwater 0.050 1.81 Virginia Canyon Groundwater 0.050 1.81 Virginia Canyon SW-GW, LF 0.05 4.9 Williams and Rio Grenda Corown Point & Virginia Carown Point & Virginia Carown Point & Virginia Carown Mine Windson Caselo Shaft Windson Caselo Shaft Windson Caselo Shaft Windson Caselo Shaft Windson Caselo Shaft Windson Caselo Shaft Deves Mest Mine Erick Turmel Briota Turmel Briota Shaft Mine Briota Shaft Mine	Witginia Cantyon Groundwatter 0.05 1.81 Witginia Camyon Groundwatter 0.05 4.9 Witaria Camyon Groundwatter 0.05 4.9 Witaria Camyon Groundwatter 0.05 4.9 Witaria Camyon Stw-Gow, HF 0.09 1.63 Witaria Camyon Stw-Gow, HF 0.09 1.63 Witaria Camyon Stw-Gow, HF 0.09 1.63 Witaria Camyon Control 0.01 1.63 Witaria Camyon Control 0.01 1.63 Windson Castle Shaft 0.01 1.63 Tho Turnel 0.01 1.63 Tho Turnel 0.00 1.64 Statier Turnel 0.00 1.63 Bride Turnel 0.00 1.64 Doves Nest Mine 0.00		Area 6 Verinia Canco (Area			Stream Semment	art contribution 2 Catenories (a) mines (h) weste nock place
Wrightia Carryon SWH-GW, LF 0.05 4.9 Wrightia Carryon SWH-GW, LF 0.05 1.63 Wrightia Carryon SWH-GW, LF 0.05 1.63 Crown Point & Vrightia Casteleon Mino Tho Turnel Windson Castle Sheft Upper Lafka Turnel Windson Castle Sheft Upper Lafka Turnel Strothan Turnel Bride Turnel Doves Mest Mine Bride Turnel	Wrighia Carryon SWH-GW, LF 0.05 1.63 1.63 Wrighia Carryon SWH-GW, LF 0.05 1.63 1.63 Mr. Crown Port & Vrighlas Carryon SWH-GW, LF 0.05 1.63 1.63 Tho Turnel Tho Turnel Tho Turnel Windson Casels Shaft Upper Lake Turnel Turnel Fopwhal Turnel Fopwhal Turnel Casels Mine Little Emma Mine Little Emma Mine Biol Eagle Mine Dowe Shift Dow Mine Dowe Mine Date Mine Data Mine Date Mine Date Mine Data Mine D		Virginia Carvon Gmindader		181		
Mingling Zentypon symeow, Lin Dudo Aliano Minera Ido Granda Surve Structural Alia Centra Proving Ido Minera and Rio Granda Surve Structural Carowin Polinic & Vinghua Carowing Structural Turnel The Turnel The Turnel Brighton Mine Carowing Structural Survey Structural Inter Care Mine Carowing Structural Inter Care Mine Carowing Structural Inter Care Mine Inter Mine Inter Mine Inter Mine Inter Mine Inter Mine Inter Mine Int	Mrightia Zamyon Swerow, Lin 0.09 1.83 9.11 Lowis 72 Writiarras and Rio Granda Crown Polityon Swerow, Lin 0.09 1.83 9.11 Lowis 72 Wintarras and Rio Granda Case Monthine Crown Polityon Swerow, Lin 0.09 1.83 9.11 Lowis 72 Wintarras and Rio Granda Case Standa Crown Polityon Swerow, Lin Crown Polityon Swerow Crown Swerow Crowswerow Crown Swerow Cr			200	2,4	_	
Villame and Rio Grands (2) Villame and Rio Grands (2) Castelorn Mine Crown Point & Virghua Castelorn Mine Windsor Castle Shaft Windsor Castle Shaft Upper Lake Turnel Tho Turnel Bride Turnel Bride Turnel Bride Turnel Bride Turnel Leves Nest Mine CDMG Si CDMG Si	Wittering School Switch 0.09 1.83 9.11 2.64/6 St Caselsborn Silver, Ewr. HF 0.09 1.83 9.11 2.67/4 St Caselsborn Mino Caselsborn Mino CDMG St CDMG St CDMG St Tho Turnel Windoor Casels Shaft 0.09 St CDMG St Upper Lake Turnel CDMG St CDMG St CDMG St Upper Lake Turnel CDMG St CDMG St CDMG St Pupper Lake Turnel CDMG St CDMG St CDMG St Fepthall Turnel Epothall CDMG St CDMG St CDMG St Edgthon Mine Edgthon Mine CDMG St CDMG St CDMG St Edgthon Mine Edgthon Mine CDMG St CDMG St CDMG St Edgthon Mine Edgthon Mine CDMG St CDMG St CDMG St Inter Ocean Mine Luttle Emma Mine CDMG St CDMG St CDMG St Inter Ocean Mine Edgthon Mine CDMG St CDMG St CDMG St CDMG St Eda		Virginia Canyon SVV+GVV, LF	50.0	9.4		
Crown Point & Vrighta Conde St Crown Point & Vrighta Conde St Catedon Mine Catedon Mine The Turnel The Turnel Upper Lake Turnel FopMe St FopMe St FopMe St Edde Turnel Brighten Mine CDMG St FopMe St Cater Cosen Mine CDMG St CDMG St	Williams and Rio Grande Crown Pairt & Vrighla Carewn Pairt & Vrighla Carewn Pairt & Vrighla Carewn Mine Upper Lake Tunnel Foptwall Tunnel Fopt		Virginia Cenyon SW+GW, HF	0.09	1.63		
Crown Point & Virghta Conde St The Turnel Castleen Mine Castleen Mine Upper Lake Turnel Two Furnel Two Berchens Two Berchens Two Berchens Fopzhall Statte Turnel Fopzhall Statte Turnel Fopzhall F	Crown Point & Vrighta Comdo St Tho Turnel Tho State Staft Upper Lake Turnel Tho Staft Stafter Turnel Tho Staft Stafter Turnel Tho Comdo St Tho Staft Stafter Turnel Tho Comdo St Tho Staft Stafter Turnel Tho Comdo St Tho C		Williams and Rio Grande				CDNG Site, Priority #1; see Tasks 34, Appendix B.
Castleton Mine Tho Tunnel Window Statis Upper Lake Tunnel Two Berdiners Two Berdiners Tunnel Fopxhall Tunnel Fopxhall Tunnel F	Caetleton Mine Tho Trunnel Windor Staff Windorhens Two Exord Satist Upper Lake Trunnel Two Exord Satist Upper Lake Trunnel Eductrunnel Fopxhall Trunnel Fopxhall Trunnel Fopxhal	~	Crown Point & Virginia				CDMG Site, Priority #1: sea Tasks 3/4, Appendix B.
The Turnel Windsor Castle Staft Upper Lash Turnel Two Brothens Foothens Foothen Turnel Foothen Hune Biddin Turnel Inter Cosen Mine CDMG St COMG St Costing Mine Little Emm Mine Little Emm Mine CDMG St Costing St Casting Mine CDMG St Casting Mine CDMG St Casting Mine CDMG St Casting Mine CDMG St Casting Mine CDMG St Casting Mine CDMG St Casting St Casting Mine CDMG St Casting Casting Mine CDMG St Casting Casting Mine CDMG St Casting Casting Mine CDMG St Casting Casting Castin	The Turnel Whideore Lake Turnel Upper Lake Turnel Proper Lake Turnel Forkhans Rattler Turnel Forkhan Mine Bidde Turnel Robes Nest Mine Doves Nest Mine Doves Nest Mine Doves Nest Mine Doves Nest Mine Doves Mine Dove State Dove State		Centleton Mine				CDMG Site Priority #1: see Tasks 34, Appendix B.
WindsorCastle Shaft Upper Lake Turnel Two Enclans Rattler Turnel Bride Turnel Bride Turnel Bride Turnel Bride Turnel Bride Turnel Doves Nest Mine Doves Nest Mine Doves Alest Mine Doves Mine Doves Alest Mine Doves Alest Mine Doves Alest Mine Doves Alest Mine Doves Alest Mine Doves Mine	Wind soft as the shaft we derive as the shaft shaft shaft as the shaft as t		The Tunnel				
Upport Lake Turnel Upport Lake Turnel Forwall Turnel Forwall Turnel Brighten Mine Brighten Mine CDMG Si Forwal Si CDMG	Upper Lake Trank Upper Lake Transi Two Exothers Rates Trank Foothall Trank Singhar Trank Rates Trank Rates Trank Rates Trank Rates Trank Rate Caelan Mine CDMG Si Inter Cealan Mine CDMG Si Inter Cealan Mine Davis Nath Little Emma Mine Bald Eque Mine Bald Eque Mine Bald Eque Mine CDMG Si CDMG Si	-	Mindace Coole Dhat				
Upper Experiment Unnel Two Servities Unnel Fopythal Munel Brighton Mine Trief Coeffan Mine CDMG Si Casino Mine Doves Nest Mine Doves Nest Mine Casino Mine Doves Nest Mine Casino Mine Doves Nest Mine Casino Casino Mine Casino Casino Mine Casino Casino Mine Casino Casino Mine Casino Casino	Upper target unnel Two Bochens unnel FoxMall Tunnel Bröhtnah Mina Bröhtnah Mina Trier Crean Mina Trier Crean Mina Trier Crean Mina Little Emma Mina						2 1
Two decohers Ratter Turmei Foptwall Turmei Foptwall Turmei Bightion Mine Bidhtion Mine CDMG Sis Cashno Mine Coves Neat Mine Little Emma Mine Little Emma Mine Little Emma Mine CDMG Sis CDMG Sis	Two Biochers The Country State		Upper Lake Junnel				ភា
Rattler Turnel Fopxhall Turnel Bightion Mine Bidde Turnel Ther Cosen Mine CDMG Si Cashro Mine Doves Neat Mine Little Eman Mine Little Eman Mine Cashro	Rattler Turnel Fopxhall Turnel Brighton Mine Trier Coean Mine CDMG Si Trier Coean Mine Cashro Mine Doves Nest Mine Trier Coean Mine Cashro Mine Doves Nest Mine Trier Coean Mine CDMG Si Diamond Joe Mine Beld Eage Mine CDMG Si Diamond Joe Mine CDMG Si		Two Brothers				5
Fopxhall Tunnel Bidprinn Mine Bidb Tunnel Inter Createn Mine Doves Skat Mine Coming St Coming St Inter Costen Mine Little Emma Mine Inter Costen Mine Coming St Inter Costen Mine	Spokhall Tunnel CDMG Sit Brighton Mine CDMG Sit Bride Tunnel CDMG Sit Bride Tunnel CDMG Sit Cashn Mine CDMG Sit Cashn Mine CDMG Sit Daves Nettine CDMG Sit Little Emma Mine CDMG Sit Little Emma Mine CDMG Sit Bild Eagle Mine CDMG Sit Diamond Joe Mine CDMG Sit Diamond Joe Mine CDMG Sit		Rattler Tunnel				5
Brighten Mine Bride Trumel Inter Casino Mine Casino Mine Doves Neat Mine Little Emma Mine Inter Cosan Mine CDMG Si CDMG Si CDMG Si CDMG Si CDMG Si CDMG Si CDMG Si	Brightan Mira CDMG Si Bride Tunel CDMG Si Inter Coean Mira CDMG Si Casiro Mira Coean Mira CDMG Si Doves Nest Mira Bria CDMG Si Little Emma Mira Buld Emme Vice CDMG Si Distra Coean Mira Buld Si Si CDMG Si Baid Casia Mira Buld Si Si CDMG Si Diamond Joe Mira CDMG Si Si CDMG Si	_	Fooxhall Tunnei				5
Brids Turnel Triser Caeen Mires Caento Mire Doves Nest Mire Doves Nest Mire CDMG St CLIE Doves Nest Mire CDMG St CDMG St CDMG St CDMG St CDMG St CDMG St CDMG St CDMG St	Ende Turnel Ende Turnel Casino Mine Casino Mine Casino Mine CDMG Si Casino Mine CDMG Si CDMG S		Brighton Mire				7
The control of the co	The contract of the contract o						10
Trier Caelen wirre Caelon Mine Doves Nest Mine Little Emma Mine Trier Cosen Mine CDMG St End Eagle Mine CDMG St	Ther Casino Mine Canada Sa Diarmond Joe Mine Canada Sa Diarmond Joe Mine Canada Sa						ā ā
Casino Mine Doves Nets Mine Little Emma Mine Inter Ocean Mine Beld Eagle Mine CDMG St	Casino Mine Cosino 20046 Si Doves Natine COM6 Si Little Emma Mine COM6 Si That Cosen Mine COM6 Si Bald Eagle Mine COM6 Si Dialid Eagle Mine COM6 Si						7
Doves Neat Mine Little Emma Mine Inter Cosan Mine Bald Eagle Mine CDMG Si	Doves Nest Mine CDMG SR Little Emma Mine CDMG SR Inter CDSMA Mine CDMG SR Beld Eagle Mine CDMG SR Diarmond Joe Mine CDMG SR		Casino Mine				22
Little Emma Mine Inter Ocean Mine Beid Eage Mine COMG Si	Little Emma Mine CDMG SI Inter CDBM SI Beld Eagle Mine CDMG SI Diamond Joe Mine CDMG Si		Doves Nest Mine				53
Inter Ocean Mine CDMG Site, Phontry #1; see Tasks 34 Beid Eagle Mine CDMG Site, Phontry #1; see Tasks 34 Device #155k3 34 Dev	Inter Ocean Mine Baid Eagle Mine Diamond Joe Mine CDMG Site, Phonty #2; see Tasks 34		Little Emma Mine				6
Beid Eagle Mine CDMG Site, Phony 24: 566 Tasks 34	Beid Eagle Mine CDMG Site, Phonity #1, see Tasks 34 Diamond Joe Mine		Inter Ocean Mine				Sile Priority #1: see Tasks 3/4
	Diamond Joe Mine		Bald Ead& Mine				Sile Priority #1: see Tasks 3/4
							ŝ

TDS Project No. 0405-5

Sheet 1 of 2

.

	and that I near Araba
2/11/05).	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ss (oral commun., 2	nare D. Carl nard E
put from R.L. Jone	During from Flor
Adapted from Table 3-3, with input from R.L. Jones (oral commun., 2/11/05).	Southers
Source: Adapte	Örnes

Public Market Scher Scher Schwarz Stream Separating Scher Sche					CDMG Sitte, Priority #2; see Tasks 3/4, Appendix B.
WES. Coden Elight graa 0.0002 0.0012 0.0012 0.0012 0.0112 0.012 0.012 0.0112 0.012 0.0112 0.012 0.0112 0.012 0.0112 0.012 0.0112 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012		ek (w/ tributaries)	Stream Seg	ment 13b	Note: Listed upstream to downstream order.
Chase Guich 0.012	I-LF NPS, Golden Gilphharea	0.0003	-0.00004	0.6	77- RMC (2004a, Table 4.3-17b)
Chase Guich 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.03 0.01 0.03 0.01 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.01 0.03 0.01 0.03	<u> </u>	0.012	0.012	3.7	71-RMC (2004a, Table 4.3-17b); Medine (2001, Table 9, #1//8); UCC-WAG (2001, 1
Gregory Incline 0.03 2.6 12.9 Gregory Incline 0.01 0.4 7.0 Gregory Incline 0.01 0.33 2.6 7.0 Gregory Incline 0.01 0.03 0.4 7.0 Quartz Hill Turnel 0.016 0.25 2.5 0.03 Quartz Hill Turnel 0.0176 2.6 0.03 0.5 2.6 Quartz Hill Turnel 0.016 0.14 0.03 0.6 7.0 0.3 2.6 7.0 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 0.03 2.6 0.03 2.6 0.03 2.6 0.03 2.6	្ទ	0.0002	50	0.8	T-RMC (20048, Table 4.3-17e)
Greent Manual Code 2.6 12.9 Greent Mill Turnel 0.03 2.6 12.9 Greent Mill Turnel 0.01 0.33 2.6 7.0 NPS, Greent Mill Turnel 0.03 0.4 7.0 5.5 Quart Mill Turnel 0.03 0.7 2.8 5.5 5.5 Quart Mill Turnel 0.07 0.33 2.6 7.0 5.5 5.5 Gregory Guich area 0.07 0.03 0.06 0.1 4.7 7.0 5.5					Medime (2001, Table 9, #6/18), tributary of Chase Culch; UCC-WAG (2001, Table 7)
Construction Construction<					Medine (2001, Table 9, #2/18), tributery of Chase Cuich; UCC-WAG (2001, Table 7)
Gregory Intelline 0.03 2.6 1.2,9 NPS (Areptin) 0.01 0.4 7,0 NPS (Areptin) 0.17 0.4 7,0 NPS (Areptin) 0.01 0.4 7,0 NPS (Areptin) 0.01 0.4 7,0 Arepting (Areptin) 0.017 2.8 5.5 Quartz HII Turnel 0.013 0.05 2.8 5.5 Arepting (Areptin) 0.013 0.05 2.8 5.5 NINC (Areal Turnel 0.010 0.14 4.7 4.2 Ninceral Turnel 0.004 0.05 3.3 3.6 3.3 Ninceral Turnel 0.004 0.02 0.02 3.1 1.1 7 7 0 3.3 3.5 3.6 3.3 3.5 3.3 3.5 3.3 3.5 3.3 3.5 3.3 3.5 3.5 3.3 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 <	「「「「」」で、「「」」というというでは、「「」」では、「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」				Medine (2001, Table 8, #5/18), tributary of Chase Cuich, UCC-WAG (2001, Table 7) Madine (2001, Table D #2/18) Hitkintson of Chases Cuich- UCC-M46, 2001, Table 7)
Gregory lifetine 0.01 0.4 7.0 Alst Gregory lifetine 0.01 0.4 7.0 Alst Gregory lifetine 0.01 0.33 5.5 0.33 5.5 Alst Hill Tunnel 0.17 2.0 0.33 5.5 5.5 0.03 0.5 3.5 5.5 2.6 2.6 0.03 0.05 3.5 5.5 2.6 2.6 3.6 0.03 0.05 3.5 2.6 3.	-0	0.033	2.6	12.9	Trends (2001, 1904, 1946 d. 8. 176)
NPS, Gregory Indine area -0.03 -0.33 -0.95 Quart: Hill Tunnel 0.077 0.5 5.5 -0.9 Quart: Hill Tunnel 0.077 0.5 2.2 2.2 Gregory Guich 0.065 2.2 2.2 2.2 2.2 Gregory Guich 0.065 2.49 5.6 3.9 3.6 3.5 MSS, Gregory Guich 0.033 0.004 0.14 4.2 2.2 3.6 Mattional Tunnel 0.004 0.01 0.005 0.04 0.1 4.2 2.5 3.6 3.7 0.3 3.6 3.7 0.3 3.6 3.7 0.3 3.6 3.7 0.3 3.7 0.3 3.7 0.3 3.7 0.3 3.7 0.3 3.7 0.3 3.7 0.3 3.7 0.3 3.7 0.3 3.7 0.3 3.7 0.3 3.7 0.3 3.7 0.3 3.7 0.3 3.7 0.3 3.7 3.7 3.7 <t< td=""><td>-</td><td>0.01</td><td>40</td><td>2.0</td><td>[77-2742] (20044). Table 4.3-172]</td></t<>	-	0.01	40	2.0	[77-2742] (20044). Table 4.3-172]
Quartz Hill Turnel 0.02 1,5 5,5 Quartz Hill Turnel 0.17 28 5,5 Chantz Hill Turnel 0.013 0.015 29 28 Chantz Hill Turnel 0.013 0.015 5,3 395 NPS, Black Harr 0.010 0.17 0,5 3,3 395 NPS, Black Harr 0.001 0.015 5,3 3,9 3,3 3,3 Nickinal Turnel 0.004 0.14 4,7 13 3,1 4,2 3,3 3,3 3,3 3,1 4,2 3,3	~	-0.004	0.00	0.0	Tr. RMC (2004a, Table 4.3.47H)
Quartz Hill Turnei 0.17 29 29 Respond Gulen 0.003 0.5 3.9 Ness Greeny Gulen area 0.003 0.5 3.9 Ness Greeny Gulen 0.003 0.5 3.9 Ness Greeny Gulen 0.004 0.1 4.7 2.2 Nethonal Turnei 0.004 0.1 4.7 4.3 Nethonal Turnei 0.004 0.1 4.7 4.3 Nethonal Turnei 0.004 0.1 4.7 4.3 Nes, (Joldy WVTP enterant 0.004 0.1 4.7 4.3 Nes, (Joldy WVTP fream 0.0005 0.028 5.3 3.3 Nes, (Joldy WVTP area 0.0005 0.002 0.028 3.3 Nes, (Joldy WVTP area 0.0007 0.002 0.002 0.02 Nes, (Joldy WVTP area 0.0007 0.002 0.02 0.02 Nes, (Joldy WVTP area 0.0007 0.002 0.002 0.02 Nes, Silver Gulch 0.002 0.002 0.002		0.026		10	Tr.RMC (2004a) Table 4.3.17b)
Gregory Guich 0.033 0.5 3.9 WPS, Gregory Guich area 2.010 0.005 3.2 3.9 WPS, Gregory Guich area 2.010 0.005 3.2 3.9 NPS, Gregory Guich area 2.010 0.005 3.1 4.2 Next. Ellick Hawk area 0.010 0.005 0.04 4.1 4.2 Next. Perfluent 0.005 0.04 4.7 13 3.1 4.2 Next. Perfluent 0.000 0.002 0.04 4.7 13 3.1 4.2 Next. Develop (Alch reach Next. Cluch reach 0.000 0.002 0.003 0.02 3.1 1.1 7 13 0.3 3.1 0.3 3.1 1.1 7 13 0.3 3.1 0.3 3.1 1.1 7 13 0.3 3.1 0.3 3.1 0.3 3.1 0.3 3.1 1.1 7 3.3 3.1 3.1 3.1 3.1 3.2 3.3 3.3 3.3		0.17	28	28	The Public (2004a. Table 4.3-17a)
NPS. Green/ Gulch area 0.010 0.005 2.2 National Turnel 2.49 59 336 National Turnel 0.004 0.1 4.7 13 National Turnel 0.005 0.05 3.1 4.2 National Turnel 0.004 0.1 4.7 13 PHCCS5D WWTP area 0.005 0.03 3.1 4.2 National Turnel 0.005 0.028 5.3 3.3 PHCCS5D WWTP area 0.005 0.038 0.3 3.1 4.2 PHCCS5D WWTP area 0.002 0.006 0.028 5.3 3.3 3.1 4.2 4.2 4.2 4.3 4.4 4.	-	0.033	0.5	0.0	TI-RWC (2004a, Table 4.3-17b)
Wittensit 2.49 59 336 National Tunnei 0.04 4.7 4.5 2.5 National Tunnei 0.04 4.7 4.2 2.5 National Tunnei 0.04 0.1 4.2 2.5 National Tunnei 0.04 0.1 4.2 2.5 National Tunnei 0.0006 0.049 0.3 3.1 PHOCSD WWTP effuent 0.0006 0.049 0.3 3.1 PHOCSD WWTP effuent 0.0006 0.028 5.3 3.1 NPS, (old) WWTP area 0.002 0.006 0.02 0.03 3.1 NPS, (old) WWTP area 0.002 0.002 0.005 0.02 0.03 0.103 1.1 7 7 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6	_	0.010	0.005	2	TT-RMC (2004a, Table 4.3-17b)
NPS. Black Hawk area -0.010 -1.45 -2.5 Nutrinari Turmei 0.004 0.1 4.2 PHCCSSD WWTP effluent 0.003 0.049 4.2 National Turmei 0.003 0.049 4.1 PHCCSSD WWTP effluent 0.003 0.049 0.3 PHCCSSD WWTP effluent 0.003 0.023 0.3 NeS, Ioby WWTP effluent 0.022 0.036 0.3 East Williams Turmel 0.002 0.000 0.03 NPS, Iobw WTP area 0.000 0.001 0.03 NPS, Sinkit Hill Glich area 0.000 0.02 0.03 NPS, Sinkit Hill Glich area 0.000 0.02 0.03 NeS, Sinkit Hill Glich area 0.000 0.02 0.02 Nesseli Gluch 5.52 0.00 0.02 2.50 Nes Brunewick Claim 0.02 0.02 0.02 4.1 Russeli Gluch 5.52 2.50 2.50 2.50 Nes Brunewick Claim 0.02 2.50 2.50		2,49	59	386	Tr-RMC (2004a, Table 4.3-17b); Medine (2001, Table 9, #4/18; UCC-WAG (2001, Table 7)
National Turnel 0.004 0.1 4.7 4.2 BH/CGSD WWTP and BH/CGSD WWTP and DODD 0.004 0.1 4.2 4.3 13 BH/CGSD WWTP and BH/CGSD WWTP and BH/CGSD WWTP and BH/CGSD WWTP and BH/CGSD WWTP and DODD 0.005 0.048 0.3 3.1 4.7 13 BH/CGSD WWTP and BH/CGSD WWTP and DAPS, Shrift Hill Guth and NBS, Shrift Hill Guth and NBS, Shrift Hill Guth and NBS, Shrift Hill Guth and NBS, Shrift Hill Guth and Aussel Guth Tiger Claim 0.005 0.021 0.03	_	-0.010	-1.45	-2.5	TP-RMC (2004s, Table 4.3-17b)
INstituent 0.04 4.7 13 BHCCSD WWTP effluent 0.0005 0.044 0.3 BHCCSD WWTP effluent 0.0005 0.044 0.3 BHCCSD WWTP effluent 0.0005 0.044 0.3 BHCCSD WWTP effluent 0.002 0.006 0.3 NSS (old) WWTP area 0.002 0.006 0.2 Stive Culch each 0.0001 0.0001 0.02 NSS, Silver Culch each 0.0001 0.0001 0.02 NSS, Silver Culch each 0.0001 0.0001 0.02 NSS, Silver Culch each 0.0001 0.002 0.002 NSS, Silver Culch each 0.0001 0.002 0.002 NSS, Silver Culch area 0.0001 0.002 0.002 NSS, Silver Culch 0.0001 0.002 0.002 Nesterof Cul	_	0.004	0.1	4.2	TY-FRMC (2004a, Table 4.3-17b)
Th/CCSD WWTP effluent 0.000 0.049 0.3 Th/CCSD WWTP effluent 0.000 0.28 5.3 NSF (ab) WWTP effluent 0.000 0.28 5.3 East Willams Tunnel 0.000 0.000 0.28 5.3 NSF (ab) WHTP effluent 0.000 0.000 0.03 3.1 East Willams Tunnel 0.000 0.000 0.03 3.1 NSS, Smith Hill Guich area 0.000 0.000 0.02 3.1 NSS, Smith Hill Guich area 0.000 0.001 0.002 3.1 Nssell Guich 0.000 0.002 0.004 1.1 7 Num Eurowick Claim 0.006 0.004 1.1 7 1.1 7 Nave Eurowick Claim 0.007 0.002 0.003 2.50 855 4.1 4 Russell Guich 5.32 5.20 2.50 855 4.1 7 7 7 7 7 7 7 7 7 7 7 7		0.04	4.7	13	Tr-RMC (2004a, Table 4,3-17a)
BH/CCSD WW/TP affluent 0.03 0.28 5.3 East Willams Tunnel 0.032 0.006 0.2 5.3 East Willams Tunnel 0.032 0.006 0.2 3.1 3.1 East Willams Tunnel 0.006 0.103 0.033 0.03 3.1 3.1 East Willams Tunnel 0.006 0.006 0.001 0.033 3.1 3.1 Russell Guich 0.006 0.001 0.006 0.004 1.1 7 Nussell Guich 0.006 0.001 0.006 0.004 1.1 7 Nussell Guich 0.006 0.006 0.004 1.1 7 <td></td> <td>0.0006</td> <td>0.049</td> <td>0.3</td> <td>TP-RMC (2004s, Table 4.3-17b)</td>		0.0006	0.049	0.3	TP-RMC (2004s, Table 4.3-17b)
NIPS, (old) WMTP area 0.022 0.06 3.1 East Williams Tunnel 0.0001 0.001 0.02 East Williams Tunnel 0.0001 0.001 0.03 NPS, contributing and Silver Ck 0.0001 0.002 0.003 NPS, silver Guich reach 0.0001 0.0021 0.002 0.003 NPS, silver Guich reach 0.0001 0.0021 0.002 0.003 0.03 NPS, silver Guich 0.001 0.0021 0.0021 0.002 0.003 0.03 NPS, silver Guich 0.005 0.003 0.004 1.1.7 Russeld Guich 0.005 0.004 1.1.7 1.1.7 Russeld Guich 0.005 0.004 1.1.7 1.1.7 Nessel Guich 0.005 0.004 1.1.7 1.1.7 Nessel Guich 5.32 2.50 895 1.1.7 Nessel Guilm 0.005 0.004 1.1.7 1.1.7 Nessel Guilm 0.005 0.004 1.1.4 1.1.7		0,03	0.28	5.3	Tt-RMC (2004a, Table 4.3-17a)
East Williams Tunnel 0.002 0.006 0.02 Rest Williams Tunnel 0.0001 0.0001 0.03 Rest Williams Tunnel 0.0001 0.0001 0.03 Rest Williams Tunnel 0.0001 0.03 0.03 NPS, Shirth Hill Gluch area 0.0001 0.03 0.03 Nessel Gulch 0.021 0.021 0.02 Russell Gulch 5.92 250 855 Russell Gulch 1.11 7 9.001 Methologith 1.11 7 9.0035 Methologith		0.032	0.06	с Г	Tt-RMC (2004a, Table 4.3-17b)
East Williams Tunnel 0.0001 0.03 NPS, Shver Guich reach 0.005 0.103 1.6 NPS, Shver Guich reach 0.005 0.002 -4.7 NPS, Shver Calich reach 0.005 0.002 -4.7 NPS, Shver Calich reach 0.005 0.002 -4.7 Rusself Calich 0.005 0.004 11.7 Rusself Calich 5.92 2.50 855 -4.7 New Ehnewck Claim 0.005 0.004 11.7 -0.04 11.7 Hampton Claim 6.92 2.50 855 -4.7 -0.04 11.7 Martin Claim 9.1014y z) 1.4 5.92 2.50 855 -4.7 Martin Claim 9.1014 1.4 1.4 -1.4 -1.4 -1.4 Martin Claim 1.1 1.1 1.1 1.1 -0.02 -1.4.0 -1.4.0 Martin Claim 1.1 1.1 1.1 1.1 -1.4.0 -1.4.0 -1.4.0 Martin Claim		0.002	0.006	0.2	T1-RWD (2004a. Table 4.3-17b)
NIPS, Silver Gulch reach 0.005 0.103 1.6 NIPS, ciwnificand of Silver Ck 0.003 0.002 0.002 NIPS, ciwnificand of Silver Ck 0.003 0.002 0.002 NIPS, ciwnificand of Silver Ck 0.005 0.002 0.002 NIPS, ciwnificand of Silver Ck 0.006 0.004 11.7 Russel Gulch 5.32 2.50 895 Naw Brunskik Claim 5.32 2.50 895 Naw Brunskik Claim 5.32 2.50 895 Nameler Claim 0.006 0.04 1.4 Neter Claim 0.005 0.04 1.4 Neter Claim 0.006 0.02 0.03 Martin Claim Neter Sciencia 0.035 1.4.0 Neter Sciencia 0.024 0.035 -14.0 Martin Claim 0.023 0.035 -14.0	_	0.00001	0.0001	0.03	Tt-RWC (2004a, Table 4.3-17a)
NIPS, Converteram of Silver CK -0.02 -0.04 11.7 NPS, Shifth Hill Guich area 0.021 -0.04 11.7 Nessel Guich 5.92 250 895 Aussel Guich 5.92 250 895 Nessel Guich 5.92 250 895 Nassel Guich 5.92 250 895 Namptor Claim (9) Fronty 2) 14 11.7 Tiger Claim (9) Fronty 2) 250 895 Marker Claim<(9) Fronty 2)		0.006	0.103	1.6	TL-RMC (2004a. Table 4.3-17b)
NPS, Smith Hill Guth area 0.021 0.04 11.7 Russel Gulds 0.006 0.04 11.4 Russel Gulds 5.92 250 855 New Ehnewick Claim 5.92 250 855 Hampton Claim 6.97 0.006 0.04 11.4 Hampton Claim 6.97 5.92 250 855 Meeter Claim 6.97 5.92 250 855 Mathin Claim 8 5.92 250 855 Mathin Claim 11.1 11.1 11.1 11.4 Mathin Claim 11.1 11.1 11.1 11.1 Mathin Claim 11.1		-0.030	200-	0.0	TT-RMC (2004a Table 4 2-176)
Russell Guich 5.32 2.50 1.4 Naw Brunski Claim 5.32 2.50 865 1.4 Naw Brunski Claim 5.32 2.50 865 1.4 Hampton Claim (@ Priority 2) Naetin Claim (1) Martin Claim (1) Naetin Claim (1) Naetin Claim (1) Naetin Claim (1) Naetin Claim (2) Nato Alam Ala Rata 1.0023 0.035 1.14.0 NPS Russel Claim (2) Ula Raven Claim (2) Martin Claim (2)	_	0.021	10.04	11 7	Trender Pande 72-17b)
Russell Guich Hampton Claim Tiger Claim Tiger Claim Menter Claim (2) Priority 2) Tiger Claim Menter Claim (2) Menter Claim Net on a Claim Net on a Claim Net Saretoga Church Teach Devens Claim Octor a Claim Powers Claim Meeler Claim Ava Adam Claim Meeler Claim Clai		0.008		4 4	TTE DAR CODAL TANG 4 2.4745 MARINE COMM TAKE D 40405 LINCLANC COMM T
New Brunewick Claim Hampton Claim (@ Priority 2) Hampton Claim (@ Priority 2) Meriter Claim (Meeter Claim (Meeter Claim (Not on a Claim Not on a Claim West Samboa Church Placer Claim Powert Scharboa Church Placer Claim Weeter Claim Meeter Claim Powert Scharboa Church Placer Claim Powert Scharboa Church Placer Claim Meeter Claim Powert Scharboa Church Placer Claim Powert Scharboa Meeter Claim Meeter Claim Powert Scharboa Meeter Claim Meeter		5 82	250	288	TTARAN (2004a) Takia 4.2.47a) mauna (2007, 1200 a, 127.0), 000-14700 (2001), 1 TTARAN (2004a) Takia 4.2.47a)
Hampton Claim (@ Priority 2) Tiger Claim Tiger Claim Medin Claim Lillian #5 Percent Lillian #5 Percent Net on a Claim Net of a Claim Net Samboa Church Piecer Claim Powers Claim Powers Claim Powers Claim Meeleer C				222	
Tapar Claim (2) Tapar Claim (1) Meeter Claim (1) Meeter Claim (1) Lillian #5 Percent Nilgara Claim Lot on a Claim Neel Saratoga Church Peeer Claim Lot on a Claim Powers Claim Powers Claim Powers Claim Powers Claim Powers Claim Powers Claim Powers Claim Powers Claim Ava Adam Claim Ava Adam Claim Ava Adam Claim Ava Adam Claim Ava Adam Claim S Russell Culch area -0.029 NPS, Parse Claim S RPS, Parse Claim Claim Powers Claim Claim Ava Adam Claim Ava Adam Claim Claim Ava Adam Claim Ava Adam Claim Claim Ava Adam Claim Ava Adam Adam Claim Ava Adam					
Nger Claim Nger Claim Martin Claim Lillian #5 Percent Nation 2 2 Percent Nation a Claim Net on a Claim Net scarting Autor Placer Claim Powers Claim Meeter Claim Ava Adam Claim Meeter Clai					
Martin Claim (1) Martin Claim Lullian #3 Percent Niera Claim Net on a Claim Vert Saratoga Church Teac Church Teac Powers Claim Powers Claim Ava Adam Claim Meeler Claim Ava Adam Claim Meeler Claim Claim Claim Claim Meeler Claim Meeler Claim	1				
Lillian #3 Fear Lulian #3 Fear Not on a Clerins Not on a Clerins Not on a Clerins Notes Caractega Church Placer Claim Pearer Claim Pearer Claim Pearer Claim Ava Adam Claim Ava Adam Claim Ava Adam Claim S. Russell Claim S. Russe					CWI Ske Pronty #7
Nugara 45 Percent Nugara 62 Percent Nugara 62 Isim Not on a Claim Lotus Claim Ucus Claim Powert Scharboga Church Piacer Claim Powers Claim Meeleer Claim Meeleer Claim Meeleer Claim Nava Adam Claim Ava Adam Claim Schurch area Meeleer Claim Meeleer Claim M	-1				CWT Site Priority #1
Nilegara Cleim & Nilegara Cleim & Lotus Cleim & Lotus Cleim & Weet Sarahoga & Murch Recer Cleim & Caluch Cleim & Caluden Cleim & Caluden Cleim & Ava Adam (2) & Must Reven Cleim & Ava Adam Cleim & Calude area & C.029 & C.035 & -14.0 & MrS, Baase Cleich area & C.029 & C.025 & -14.0 & MrS, Baase Cleich area & C.029 & C.025 & -14.0 & MrS, Baase Cleich area & C.026 & C.025 & -14.0 & MrS, Baase Cleich area & C.026 & C.026 & -14.0 & MrS, Baase Cleich area & C.026 & C.026 & -14.0 & MrS, Baase Cleich area & C.026 & C.026 & -14.0 & MrS, Baase Cleich area & C.026 & -14.0 & MrS, Baase Cleich area & -14.0 & MrS, Baase Cleich area & -14.0 & MrS, Baase Cleich area & -14.0 & MrS, Baase &	-				CWT Site Priority #1
Not on a Claim Lotu on a Claim Weet Sarwhoga Church Plecer Claim Powers Claim (2) Meeker (2)	_				CWT Site Priority #1
Lotus Cleim Lotus Cleim Church Tearer Claim Powers Claim Meeler Claim Meeler Claim Mar Adam Clim Mar Adam Clim Solden Claim Callon arrea Conce Mar Sharesel Cluich arrea Conce Conce Claim Mar Sharesel Cluich arrea Conce Conce Claim Mar Sharesel Cluich arrea Conce	-				CW/T Site Priority #1
Weet Saratoga Outurch Recer Claim Conturch Recer Claim Powers Claim Meeter Claim (2) Meeter Claim Ava Adam Claim Ava Adam Claim Seven Claim Ava Adam Claim Seven Claim Seven Claim Obten Claim Seven Claim Ava Adam Claim Seven Claim Seven Claim Ava Adam Claim Seven Claim S					CWT She Priority #1
Church Placer Claim Powens Claim Powens Claim (2) Meeler Claim (2) Ava Adam (2) Ava Adam Claim Selden Claim Selden Claim Deden Claim Selden Claim Selden Claim Selden Claim Selden Claim Selden Claim Selden Claim Arb (2) NPS, Rates Claim (2) NPS, Rates Claim (2)	-				CW/T Olde Priority #1
Golden Cleim Powers Cleim Meeker Claim (2) Lutte Revon Claim Alva Adams Claim Alva Adams Claim Solden Claim Solden Claim Subs. Ratich area -0.029 0.035 -14.0 NPS, Plaste Glaich area -0.029 0.035 -14.0	~				CWT Ste Priotty #1
Powers Claim Meeler Claim (2) Meeler Claim (2) Ava Adawen Claim Ava Adawen Claim Ava Adamen Claim Dolden Claim Dis Russell Claim NPS, Plaste John area -0.029 0.035 -14.0 NPS, Bake Soluch area	-				CWT Site Priority #1
Meelec Claim (2) Meelec Claim (2) Ava Adam Claim (2) Ava Adam Claim (2) Ava Adam Claim (2) Ava Adam (2) Ava Adam (2) Arbs, Ratsell Guich area (2) Arbs, Ratsell G			14,000		CW/T Site Priority #1
Little Raven Cleim Alva Adams Cleim Golden Cleim PSS, Russell Galch area -0.029 0.035 -14.0 NPS, Barsell Galch area -0.024 -0.055 -4.6					CWT She Prints #1
Alva Adams Claim Golden Claim DPS, Russell Gulch area -0.029 0.035 -14.0 NPS, Parke Subth area -0.024 -0.025 -4.6					CIMT She Priority #1
Golden-Claim NPS, Russell Guich area -0.029 0.035 -14.0 NPS, Bates Guich area -0.024 -0.05 -4.6					CM/T Site Priority #1
NPS, Russell Guich area -0.029 0.035 14.0 NPS, Batas Guich area -0.024 -0.05 -4.6					
NPS, Bates Quich area -0.024 -0.05 -4.6	1~	-0.029	0.035	-14.0	T1-RMC (2004a Table 4 3-17h)
		-0.024	0.05	19	TTURNO (2004a) Tahla 4.2-17b)
411 An 786		411		786	Tr.DMAC /2000de Table 4 2-172 /2000di hiteli
	Unterked Area 8 - Other Macceller Bources	Sources			

LF = low flow; HF = high flow. Where no distinction is made, assume HF = LF for purposes of this pretiminary assessment. LF assumed to apply to 7-month period: October through April. HF assumed to apply to 5-month period: May through September. Notes:

TDS Project No. 0405-5

Sheet 2 of 2

Appendix D – NPS Reductions and Controls [R.L. Notes, Task 7b, in preparation? See guidance from TDS dated 2/17/05. No information nor deliverable has been received to date.]

Appendix E

Integrated Total Maximum Daily Load (TMDL) Assessment for the Upper Clear Creek Watershed, Selected Impaired Stream Segments Clear Creek and Gilpin Counties, Colorado Conceptual TMDL Document - September 27, 2005 [revised final]

TMDL Areal Coverage	Entire Upper Clear Creek Watershed
State (CDPHE) Watershed/WBIDs	COSPCL02, 05, 09a, 09b, 11, and 13b
Relevant Stream Segments	2, 5, 9a, 9b, 11, and 13b
Water-Quality Variables Addressed	Dissolved Cadmium, Copper, and/or Zinc
Use Classification/Designation	Varies by Stream Segment (see below)
Water-Quality Targets	Varies by Stream Segment (see below)
TMDL Goal	Attain/Maintain Aquatic Life Classifications

EXECUTIVE SUMMARY

The upper Clear Creek watershed is a medium-sized watershed, located completely within the U.S. Geological Survey's hydrologic unit code 10190004 and is west of the Denver metropolitan area, Colorado. Clear Creek is tributary to the South Platte River, and several of the watershed's stream segments are included on the most recent (2004; 2006 draft) 303(d) lists for impaired water quality. These stream segments are the subject of this holistic-watershed total maximum daily load (TMDL) assessment. The listings for each segment include one or more trace metals, concentrations of which impair each segment's cold-water Class I aquatic-life classification. A draft TMDL for this watershed's stream segment 2 (CDPHE, 2002) was prepared but has not been finalized.

The purpose of this "conceptual" TMDL is to provide CDPHE-WQCD and UCCWA stakeholders with a technical framework from which to develop the necessary TMDL assessment(s) for listed stream segments in the upper Clear Creek watershed. The Upper Clear Creek Watershed Plan includes much of the data compilation and statistical/graphical analyses, source-loadings inventories, and loads-reductions estimates needed for this TMDL effort. Subsequent TMDL-assessment investigations thus will benefit from this document as well as the Upper Clear Creek Watershed Plan.

I. INTRODUCTION

Section 303(d) of the Federal Clean Water Act requires states to develop total maximum daily loads (TMDLs) for waters at levels necessary to achieve and to maintain assigned water-quality standards. TMDLs involve calculations of the amount of pollutants that a waterbody can receive, yet continue to attain water-quality standards.

A TMDL is the sum of three components: (1) a waste load allocation (WLA), the part of the pollutant load associated with point-source discharges; (2) the load allocation (LA), the part of the pollutant load attributed to natural background and/or non-point sources;

and (3) a margin of safety (MOS). Any given TMDL also may include an allocation reserved to accommodate future growth or economic-development changes in the watershed.

The TMDL may be expressed as:

$$TMDL = WLA + LA + MOS.$$

TMDL development is required for any pollutant that exceeds the assigned numeric standard within a waterbody, in this case, any designated stream segment of a watershed. Stream segments that are in non-attainment of stream standards are considered to be impaired and are identified on Colorado's 303(d) List of Impaired Waters. TMDLs that address impaired segments identify the allowable (allocated) pollutant load that should result in the attainment of a given stream standard associated with that pollutant. Stream segments of the upper Clear Creek watershed that are included on the 2006 "For Sure" Colorado 303(d) list for non-attainment of trace metals and associated aquatic life-standards include:

- 2 mainstem Clear Creek between Silver Plume and Idaho Springs (Argo),
- 9a Fall River,
- 9b Trail Creek,
- 11 mainstem Clear Creek between the Argo discharge and the Farmers Highline Canal diversion near Golden, and
- 13b North Fork Clear Creek between the Black Hawk water intake and its confluence with Clear Creek
- [Note: Stream segments 3a and 3b are not included in the current watershed plan.]

Stream segment 5 (West Fork Clear Creek between the confluence with Woods Creek and its confluence with Clear Creek) also was on Colorado's 2002 303(d) list but was "de-listed" by the USEPA for zinc, upon the recommendation of the CDPHE-WQCC and approval by the USEPA (2005). It is still listed for copper (Cu) (CDPHE, 2004). Despite its change in status, it is considered in the *Upper Clear Creek Watershed Plan*. It is recommended that this conceptual TMDL consider these designated stream segments and the linkages between water-quality conditions and necessary loads reductions inherent between upstream and downstream stream segments.

II. GEOGRAPHICAL EXTENT

The upper Clear Creek watershed includes the following towns: Silver Plume, Georgetown, Berthoud, Empire, Lawson/Dumont, Idaho Springs, and Central City/Black Hawk. Streams in the watershed or associated alluvial groundwaters supply drinking water to nearly 400,000 residents within the watershed and in the Denver metropolitan area, as well as water for several industries. A major transportation route, I-70, transects the watershed. The Loveland ski area is located at the headwaters of Clear Creek. During seasonal high streamflows, rafting of the mainstem Clear Creek is an important recreational activity, along with fishing during seasonally higher flows.

Although 80-percent owned by the U.S. Government (principally, the U.S. Forest Service), the watershed has been impacted by a large number of minerals-exploration pits, mine workings (shafts and waste-rock piles), and mills (several with associated tailings). The only major molybdenum mine currently operating within the watershed is the Henderson Mine owned and operated by Climax Molybdenum Company, a subsidiary of the Phelps Dodge Corporation.

The upper part of the Clear Creek watershed is upstream from a long-term USGS located on Clear Creek near the City of Golden (USGS gage 06719505 Clear Creek at Golden). At this streamflow gage, the drainage area of the upper watershed is 400 square miles, including the following major tributaries: South Fork Clear Creek, West Fork Clear Creek, Fall River, Chicago Creek, and North Fork Clear Creek. There are also a number of minor tributaries. Stream segments included in the upper Clear Creek watershed are 1 through 13; stream segments 3, 9, and 13 are separated into 3a/3b, 9a/9b, and 13a/13b, respectively. This conceptual TMDL addresses impairment in terms of listed trace metals for stream segments 2, 5, 9a, 9b, 11, and 13b (Figure E-1).

III. WATER-QUALITY STANDARDS

Three categories of water-quality standards should be considered: (1) currently applicable standards, including several temporary modifications (so-called "temp mods"); (2) ultimate underlying standards; and (3) a site-specific standard for zinc that currently applies to West Fork Clear Creek (stream segment 5). This latter standard, resulting in a zinc target level in between the applicable standards and underlying standards, is judged protective of the aquatic-life standards for that stream segment and possibly for other stream segments in the watershed.

An important concept developed in the *Upper Clear Creek Watershed Plan* is the recommended use of seasonal WQ standards. Specifically, the watershed's streams indicate WQ characteristics during a 5-month high-flow season (months of May through September) that are substantially distinct from a 7-month low-flow season (months of October through April). The seasonal nature and year-to-year variability of streamflows throughout the watershed are indicated by period-of-record monthly streamflows at selected USGS streamflow gages (Figure E-1).

IV. PROBLEM IDENTIFICATION

Aquatic-life impairment of stream segment 2 was the focus of a draft TMDL (CDPHE, 2002; Woodling and others, 1998; Woodling and Ketterlin, 2002). The listed trace metals associated with the 2004 CDPHE 303(d) list are the focus of the *Upper Clear Creek Watershed Plan* associated with this appendix (see Table 1-1). The various trace metals of concern vary with stream segment. The seasonal stream water-quality standards involve three critical trace metals: cadmium, copper, and zinc. [Note: Other trace metals, specifically lead and manganese, are involved in the newly designated stream segment 9a (Trail Creek) but are not addressed in the current Watershed Plan.]

For this conceptual TMDL assessment, the interrelationship between various stream segments is a critical aspect. In particular, upstream load reductions will benefit downstream stream segments; this is important in setting trace-metals-load allocations.

V. WATER-QUALITY GOALS

Three levels of water-quality goals have been addressed in the current *Upper Clear Creek Watershed Plan* (see Table 1-3):

- Applicable (current) stream standards, often involving temporary modification Type-iii trace-metals standards or ambient-based standards;
- Underlying stream standards, involving seasonal hardness-based table-valuestandards calculations; and
- A possible application of a negotiated zinc-adjusted table-value standard (resulting in de-listing of this trace metal) for the lower reach of West Fork Clear Creek (stream segment 5) to other stream segments in the watershed.

Segment-by-segment trace-metals load reductions have been estimated, based upon available data and information regarding a number of remediation projects (completed, ongoing, or planned) (see Section 3 and associated Table 3-6). Using dissolved-zinc as an indicator variable, the quantity of Zn still needed to be removed (besides ongoing and planned remediation projects) has been estimated for critical stream segments in the upper Clear Creek watershed (see Table 4-8).

VI. INSTREAM CONDITIONS

Streamflow and associated trace-metals-quality conditions have been evaluated in considerable detail in a recent trace-metals data assessment (TDS Consulting Inc., 2004) and the Upper Clear Creek Watershed Plan (TDS Consulting Inc., 2005). In general, water-quality sampling surveys have been conducted systematically (bimonthly during low flows; monthly during high flows) since February 1994, and a USGS streamflow-gaging program was implemented starting in October 1994. Over time, changes in monitoring sites have occurred: Beginning in 2005, a reduction in the WQ monitoring program occurred (generally, discontinuing all but single high-flow/low-flow sampling surveys during May and October). For the trace-metals component in this latter case, sampling surveys for 12 sites in the watershed continued for the eight-survey schedule and was supported by the USEPA for analytical services (since February 2005) and field-sampling support (since July 2005).

Based upon the past ten years of streamflow records at several gages operating on streams in the watershed, the following observations are useful:

- 1. The 1995-water year streamflows were the highest for the period of record at most of the stream gages.
- 2. The 2002-water year streamflows were the lowest for the ten-year period of record; 2004-water year streamflows were the second lowest.

3. Approximately 84 percent of the flow volume in the watershed's streams occurs during the five-month high-flow period, with the remaining (16 percent) occurring during the seven-month low-flow period.

Based upon 14 years of trace-metals records, the following are noteworthy:

- 1. Trace-metals concentrations in part are affected by streamflows, with relatively high concentrations occurring during the 1995 water year and lower concentrations noted during recent years (since 2000). Concentrations also in part are positively impacted by recent remedial reclamation and water-treatment programs.
- 2. Trace-metals concentrations at downstream sites in the watershed have benefited from remedial activities, especially with regard to the Argo treatment facility (since 4/98) reducing trace-metals loads discharging into the mainstem Clear Creek.
- 3. Seasonal variations in hardness vary inversely with seasonal streamflows; that is, hardness concentrations are lower during higher flows and are higher during low flows (see Appendix Figures A-1 and A-2).
- 4. Within any given stream segment, hardness and trace-metals concentrations may vary greatly at different monitoring sites along the segment. For trace metals, this is indicated by the following two examples:
 - a. For stream segment 2, where the upper part exhibits higher dissolvedzinc concentrations that are reduced (diluted) primarily by flows from West Fork Clear Creek. Also, stream segment 2 exhibits gradually increasing dissolved-copper concentrations along this mainstem Clear Creek segment, caused by copper-contributing sources especially downstream from the West Fork Clear Creek confluence (TDS Consulting Inc., 2002, Figure 47).
 - b. Trace metals concentrations are higher in the mid-part of stream segment 13a, due to mining-related sources (TDS Consulting Inc., 2002, Figure 48).

VII. WATER SUPPLIES, TREATMENT, AND CONTAMINANT SOURCES

This section provides information regarding permitted public water supplies in the watershed, permitted point-source discharges (wastewater treatment plants), and generally aspects of mine-related activities impacting water quality.

Public-Water Supply Entity *	ID No.	Stream Segment
Loveland Basin/Valley Ski Area	210015/6	1, headwaters of Clear Creek
Town of Silver Plume	110035	1, headwaters of Clear Creek
Town of Georgetown	110015	2, upper mainstem Clear Creek
Climax – Henderson Mine	210001	?, tributary of West Fork Clear Creek
Town of Empire	110010	5, West Fork Clear Creek (check?)
Mill Creek Park WIA	210017	2, upper mainstem Clear Creek

Permitted Public-Water Supplies

110020	2, tributary to mainstem Clear Creek
124171	13a, tributary to upper NFCC (?)
124147	13a, NFCC; 11, lower Clear Creek
110026	11, tributary of lower Clear Creek
130040	11, lower mainstem Clear Creek
230020	11, lower mainstem Clear Creek
	124171 124147 110026 130040

Source: Gary Karst, CDPHE-WQCD, written commun., 8/18/05. * Several others are not listed.

Permitted Point-Source Discharges

Facility Permit	CDPS	Facility Owner	Stream Segment
Name	Permit		
	No.		
Clear Creek Skiing	CO-	Clear Creek Ski Corp.	1, headwaters of
Corporation WWTP	0040835	_	mainstem Clear Creek
Eisenhower Tunnel	CO-	Colorado Department of	1, headwaters of
WWTP	0026069	Transportation	mainstem Clear Creek
Georgetown WWTP	CO-	Town of Georgetown	2, upper mainstem Clear
	0027961		Creek
Henderson Mine	CO-	Climax Molybdenum Corp.,	7, upper West Fork Clear
WWTP	0041467	a subsidiary of Phelps Dodge	Creek
Empire WWTP	COG-	Town of Empire	5, lower West Fork Clear
	584065		Creek
Central Clear Creek	COG-	Central Clear Creek	2, upper mainstem Clear
SD WWTP	584055	Sanitation District	Creek
St. Marys WWTP	CO-	AAA (operator); Frederick	9a, Fall River
	0023094	Huff, Attorney	
Shwayder Camp	COG-	Shwayder Camp, Zim S.A.	2, tributary to upper
WWTF	588009	Zimmerman, Director	mainstem Clear Creek
Idaho Springs	CO-	Town of Idaho Springs	11, lower mainstem
WWTP	0041068		Clear Creek
Clear Creek High	CO-	Clear Creek County School	11, tributary to lower
School WWTP	0046574	District	mainstem Clear Creek
BHCCSD WWTP		Black Hawk/Central City	13b, North Fork Clear
(new facility) 0046761 Sanitation District			Creek

Source: Bill McKee, CDPHE-WQCD, written commun., 8/2/05.

Non-Point Sources

Most of the trace-metals loading into streams of the upper Clear Creek watershed are from historical mining-related activities that have been inventoried and are listed in the *Upper Clear Creek Watershed Plan* (Table 3-2, Appendix B, and Appendix Table C-2). For categorization purposes, trace-metals contributions from mine-related waste-rock piles and mill tailings are considered non-point sources.

VIII. TECHNICAL ANALYSIS

Even though the highest trace-metals loads occur during times of seasonal high flows, the most critical time related to instream dissolved-trace-metals concentrations is typically during low-flow conditions in the winter and early spring (CDPHE, 2002). This latter period is when there is the least water available for dilution of acid-mine drainage and contaminated groundwater trace-metals loads.

Attainment of applicable, underlying, or other numeric standards and the associated control of general trace-metals loads during low-dilution seasons is the key towards achieving acceptable instream dissolved-trace-metals concentration. This conceptual TMDL assessment is intended to characterize the gross trace-metals-loads reductions needed to attain dissolved-cadmium, -copper, and -zinc standards (as appropriate, for a given stream segment) during critical low-flow conditions and to apportion that necessary reduction among the various contributing point and non-point source components.

Point-Source Contributions

In order to assess the impact of point-source dischargers to instream dissolved-tracemetals levels, critical discharge conditions for these point sources should be designated. Available dissolved-trace-metals data for the various wastewater-treatment facilities in the upper Clear Creek watershed are limited (see TDS Consulting Inc., 2002b). Detailed facility-effluent data covering both pre-operational and post-operational periods are available for the Argo treatment facility (TDS Consulting Inc., 2005, Figure 3-1).

Non-Point Source Contributions

Remediation activities relating to non-point source contributions may include, but not be limited to, the following (CDPHE, 2002):

- 1. Capping or other remediation actions or best-management practice controls involving mine-related waste-rock piles.
- 2. Residential well assessment and alternative drinking-water supplies.
- 3. Passive (wetlands) treatment, such as tested for the Burleigh Tunnel.
- 4. Collection of NPSs and trace-metals-impacted groundwater resources in the Idaho Springs (and possibly upstream) area for treatment and trace-metals removal.

Antidegradation Requirements

Many stream segments (stream segments 5, 7, 8, 11, 12, and 13b) in the upper Clear Creek watershed are designated as use-protected or "non-reviewable" waters. For the other stream segments (1 through 4, 9a and 9b, 10, and 13a), antigradation requirements may be applicable for the formulation of point-source effluent-discharge limits. However, several of these latter stream segments have no existing wastewater discharges.

IX. TMDL ALLOCATIONS BY STREAM SEGMENT

Waste-Load Allocations

For the relevant trace metals of concern in a given segment, the estimated ongoing/planned load reductions have been estimated on a stream segment-by-segment basis. Next, comparisons are made using these load reductions to assess whether or not the various target levels are achieved in terms of applicable, underlying, or other waterquality stream standards. Finally, in terms of zinc as an indicator trace metal, the additional load reduction needed to meet specific water-quality standards targets is assessed, in the case that the most stringent standard is not met with only the ongoing/planned remediation work. All aspects of these three parts of the WLA process have been extracted from the appropriate parts of the Upper Clear Creek Watershed Plan.

The estimated trace-metals load reductions for key input components are indicated in Table 4-1, with the two major, and high-priority, subareas with anticipated significant trace-metals load reductions being: (1) Virginia Canyon (ongoing), and (2) OU4 water treatment (planned). In addition, planned zinc load reduction in the Silver Plume area results in comparably lower zinc levels in stream segment 2 (Table 4-1). The non-point source and sediment controls for North Fork Clear Creek (stream segment 13b) are small (2 percent in each case) relative to the relative load reductions expected to be achieved through water treatment. The zinc-load reduction in stream segment 11 (lower mainstem Clear Creek) reflects the remediation projects anticipated for upstream stream segments 2 and 13a (Table 3-6).

The ability of potential trace-metals loads reductions to fulfill the applicable or underlying water-quality standards targets is summarized in the *Upper Clear Creek Watershed Plan* (Table 4-7), which was based upon a detailed and prioritized inventory of potential and existing sources (Section 3). In the North Fork Clear Creek subwatershed, a series of WASP4-META4 model applications was conducted by Dr. A.J. Medine, under contract with the USEPA (UCC-WAG, 2001, Appendix B; TDS Consulting Inc., 2005, pp. 4-5 through 4-7). For the four highest-priority areas within the entire watershed, the following trace-metals reductions are anticipated (TDS Consulting Inc., 2005, Table 3-6):

- 1. Area 6 Virginia Canyon (high priority), directly affecting the lower part of stream segment 2. Estimated TMs-loads reductions for the low-flow season are: 8 percent for cadmium, 56 percent for copper, and 16 percent for zinc.
- 2. Area 7 North Fork Clear Creek (high priority), directly affecting stream segment 13b. Estimated trace-metals-loads reductions for the low-flow season associated with water-treatment remediation activities for Gregory Incline, Gregory Gulch, and the National Tunnel are: 29 percent for cadmium, 51 percent for copper, and 19 percent for zinc. A second categorical area of the North Fork Clear Creek subwatershed, the Russell Gulch area, has been delineated for remediation, principally through

sediment controls. For Russell Gulch, estimated trace-metals-loads reductions for the low-flow season are 2 percent for each trace metal of concern (cadmium, copper, and zinc). These are substantially less effective than the water-treatment remediation activities recommended for Gregory Incline, Gregory Gulch, and the National Tunnel.

- 3. Area 2 Silver Plume area (moderate priority), directly affecting the upper part of stream segment 2. Estimated trace-metals-loads reductions for the low-flow season are: 4 percent for cadmium, 0 percent for copper (low concentration/load), and 19 percent for zinc.
- 4. Area 5 Georgetown-to-Idaho Springs area (moderate priority), directly affecting most of stream segment 2. Estimated trace-metals-loads reductions for the low-flow season are: 1 percent for cadmium, 9 percent for copper, and 2 percent for zinc. These estimates are exclusive of the reductions envisioned for other areas affecting this stream segment (see above).
- 5. Stream segment 11 The cumulative downstream trace-metals-loads reductions affect this mainstem Clear Creek stream segment rather than any area-specific remediation activities proposed for this part of the watershed. Given this rationale, the cumulative estimated trace-metals-loads reductions for the low-flow season are: 75 percent for cadmium, 81 percent for copper, and 33 percent for zinc (Table 3-6).

Given these anticipated (estimated) trace-metals-load reductions, the attainment of applicable and underlying TMs stream standards are summarized in Tables 4-5 and 4-6 of the *Upper Clear Creek Watershed Plan*. Attainment vs. non-attainment conditions is summarized as follows:

Table E-1 – Summary of Ability of Potential Trace-Metals Loads Reductions to Attain Applicable Stream Standards (Temporary Mods) and Underlying Targets (Table-Value Standards or Site-Specific Standards)¹

Stream Segment	Low Flow/High Flow Condition	Attainment of D-Cd Standard	Attainment of D-Cu Standard	Attainment of D-Zn Standard
2	LF Temp Mod	2	Yes, 4,2/8.1	目前最新的推动。
	LF US ³		Yes, 4.2/7.9	NG 20057-100*
9a	- HOP N(=100)0 Maral			
	1000 (OLS)			
9b	1110 Manapathy total	计 國家 統領的 化		Change Marshellander
	in the second	litter Sales		and and the stars
13b	LF Temp Mod	Yes, 4.6/6.0	Yes, 33.4/64.0	Yes, 1548/1864
	LF US		1114、2月10日2月	
11	LF Temp Mod		n an	Yes, 323/339
<u> </u>	LF US			

Extracted from Tables 4-5 and 4-6 of the Upper Clear Creek Watershed Plan.

^{2 --} No comparison with stream standard applies (not applicable), because it is judged attainable.

US = underlying (former/ultimate, equation-based) standard/target (see Table 1-3). [Note: These often are site-specific.]
 D-Cd, dissolved cadmium; D-Cu, dissolved copper; and D-Zn, dissolved zinc.

The non-attainment situation for stream segment 2 tributaries designated as separate stream segments (9a -- Fall River; 9b -- Trail Creek) have not been considered further in this Watershed-Plan assessment for the following reasons:

- 1. No remediation projects are currently proposed for these subareas.
- 2. In the case of Trail Creek, the stream standards as well as data for computing table-value standards and 85th percentiles are based upon a single 12-month period of data only.
- 3. No high-flow exceedances are noted for any of the currently applicable trace-metals stream standards (TDS Consulting Inc., 2005, Table 1-3). [Note: This commonly is not the conclusion for underlying standards.]

If attainment of underlying stream standards for stream segments 2, 13b, and 11 are addressed in some future evaluation, then these tributary high-flow non-attainment conditions need to be considered.

The final step in this aspect of the TMDL assessment is to estimate the additional tracemetals-loads reduction needed to fulfill attainment of specified water-quality standards targets (applicable, underlying, or other stream standards). This is assessed using zinc as an indicator trace-metal variable. The additional zinc-load reductions needed to achieve the various zinc targets are calculated as given in Table 4-8 of the *Upper Clear Creek Watershed Plan*. Consideration of the site-specific dissolved-zinc chronic standard developed for West Fork Clear Creek (accepted by CDPHE-WQCC and USEPA) was included, assuming that it would be applicable for other stream segments in the upper Clear Creek watershed.

It may be beneficial to make this "incremental" additional load-reduction assessment in reverse order (from downstream to upstream). For stream segment 11's applicable dissolved-zinc stream standard, the anticipated load reduction (32.6 percent) results in a concentration of 323 ug/L, which is below the temporary-modification standard target of 339 ug/L. However, to attain the underlying (TVS) zinc standard of 124 ug/L, another 38.5 lbs/d Zn would have to be removed during the low-flow season. To attain the West Fork Clear Creek-accepted zinc standard (229 ug/L, using a hardness average of 106 mg/L), less than half this additional removal of zinc load (18.2 lbs/d) would have to be removed.

For stream segment 13b, the anticipated dissolved-zinc load reduction (18.8 percent, resulting in a modified concentration of 1548 ug/L) attains the zinc temp mod of 1864 ug/L but is not sufficient for attaining the other two, more stringent targets (underlying: 221 ug/L or West Fork Clear Creek: 405 ug/L, based upon an average hardness of 210 mg/L). For attainment of these during the low-flow season, additional zinc loads would have to be removed: 32.5 lbs/d or 28.2 lbs/d, respectively. In comparing these loads removal with those needed to attain targets for SS 11, it is apparent that this removal is nearly sufficient (84 percent of what is needed) to attain the underlying stream standard and is more than sufficient to achieve the West Fork Clear Creek are met, then the additional zinc load reduction downstream in stream segment 11 would be considerably less (only 6.0 lbs/d) to attain the ultimate stream standard.

In order to attain the applicable stream standard (257 ug/L) for stream segment 2, the zinc load reduction during the low-flow season needs to increase from the currently estimated 16.1 percent to 29.2 percent. To achieve the more stringent standards, 55.5 lbs/d more dissolved-zinc load would need to be removed to attain the ultimate stream standard of 103 ug/L, and 31.3 lbs/d would need to be removed to attain the equivalent West Fork Clear Creek stream standard of 191 ug/L at an average low-flow hardness concentration of 85.8 mg/L. Attainment of any of these targets would eliminate the need for zinc-loads reduction in downstream stream segment 11. All stream segment 11 stream-standards targets theoretically could be met through upsteam remediation and resultant zinc-loads removals at the levels indicated for stream segment 2 to attain this segment's stream standards.

Margin of Safety

The margin of safety for protection of the previous dissolved trace-metals stream standards is inherent in the conservative levels determined for the waste-load allocation for each discharge. In calculating planned trace-metals loads reductions, a margin-of-safety factor was included (see Table 3-6) to add some degree of conservatism. For the low-flow stream-segments cases, this factor was assumed to be 40 percent for all trace metals. In other words, for each total load reduction, 40 percent of each estimated trace-metal load was assumed not to actually be removed but would remain as a stream input. Follow-up monitoring that will indicate whether or not the recommended controls are protective of aquatic-life use.

These proposed waste-load allocations should give ample protection for the impaired stream segments of the upper Clear Creek watershed and yet allow for discharges or changes in upstream D-TMs loads. The waste-load allocations assigned to key tributaries of the mainstem Clear Creek steam segments (2 and 11) also should be protective. The actual trace-metals-loads levels from certain tributaries (namely, North Fork Clear Creek and Virginia Canyon over the near term; Trail Creek over the long term) may be reduced even further as the appropriate remediation projects proceed towards implementation.

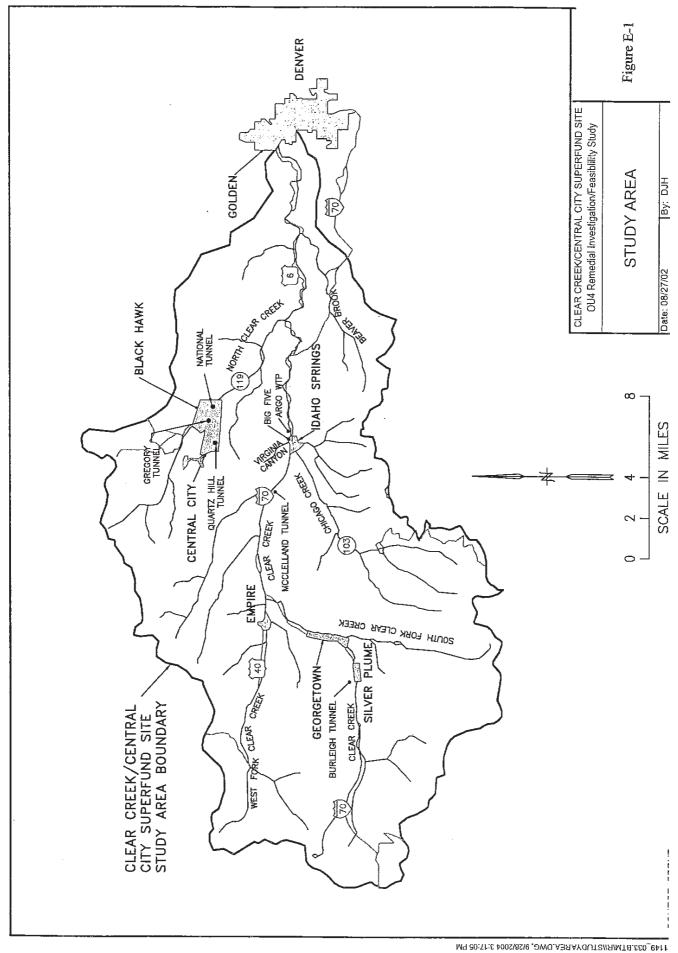
X. PUBLIC INVOLVEMENT

Stakeholder involvement constitutes an essential element of the so-called "watershedprotection approach" (CCWF, 1993, Fact Sheet, 2 p.). Accordingly, comments on the *Upper Clear Creek Watershed Plan* were solicited from Clear Creek Watershed Forum 2005 participants and are summarized in the Plan. Public participation and community involvement for any TMDL assessments in the upper Clear Creek watershed should incorporate the identified stakeholders active in the Upper Clear Creek Watershed Association (UCCWA) as well as the Clear Creek Watershed Forum (CCWF).

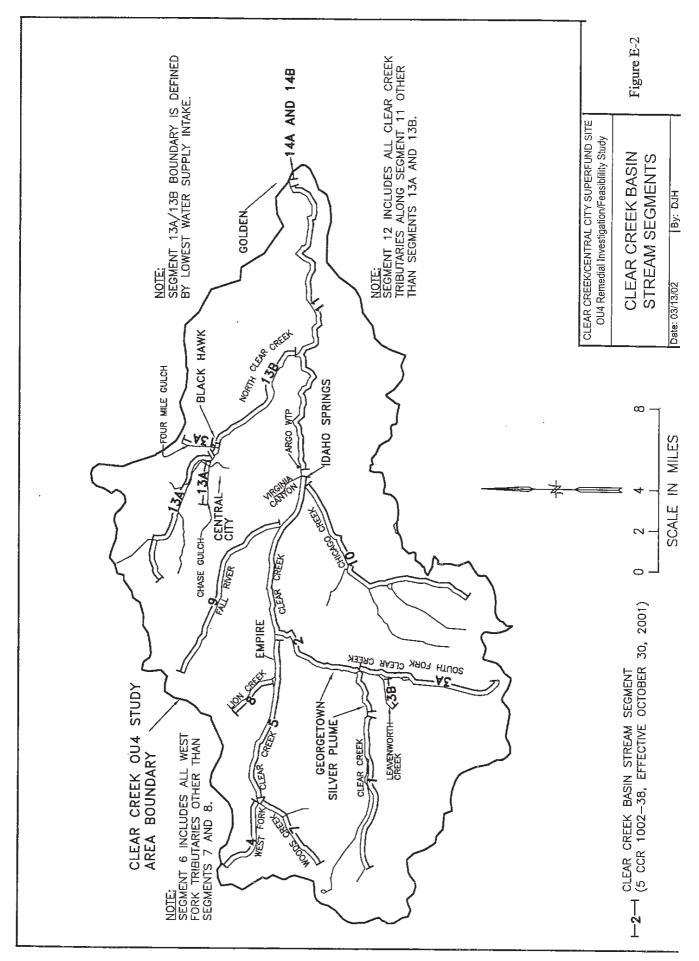
During the 1994-2001 period, the Upper Clear Creek Watershed Advisory Group (UCC-WAG, 2001) was instrumental in advising the various regulatory agencies on local interests, priorities, and opinions regarding mining-related remediation needs throughout

the watershed. Through a series of USEPA TAG-funded grants over this period, UCC-WAG members and technical staff held meetings with watershed stakeholders, completed a series of newsletters and fact sheets, and prepared a final report summarizing its findings over its period of work and support activities. This effort was useful in the later-completed OU4 RI/FS project, culminating in a recent record of decision (ROD) (USEPA and CDPHE, 2004) for this final CERCLA (Superfund) remedial effort in the watershed.

REFERENCES


- Clear Creek Watershed Forum, 1993, Resource Manual, Clear Creek Watershed Forum II, October 15, I. Fact Sheet on Watered Protection Approach, 2 p.; Appendix of Funding Sources, January (Draft), 9 p.
- Colorado Department of Public Health & Environment (CDPHE), 2000, Status of Water Quality in Colorado – 2000: Prepared by the Water Quality Control Division (WQCD) with Assistance from Mesa Technical Consultants, December, 5 sections. [Note: Update for 2004; request from Bill McKee, WQCD for review]
- Colorado Department of Public Health & Environment (CDPHE), 2002 (draft), Total Maximum Daily Load Assessment, Clear Creek, Clear Creek County, Colorado: Water Quality Control Division (WQCD), April, 23 p. [TDS Files]
- Colorado Department of Public Health & Environment (CDPHE), 2004a, Status of Water Quality in Colorado – 2004, The Update to the 2002 305(b) Report: Prepared by the Water Quality Control Division (WQCD), April, 26 p. and Appendices A-C. [TDS Library]
- Colorado Department of Public Health & Environment (CDPHE), 2004b, Regulation #93

 2004 Section 303(d) List Water-Quality-Limited Segments Requiring TMDLs: Water Quality Control Division (WQCD), Adopted March 17, Effective May 17, 19 p. [CDPHE-WQCC website]
- TDS Consulting Inc., 2002a, Upper Clear Creek Watershed, Trace-Metals Data Assessment, Clear Creek/Central City Superfund Investigative Area, Final Report: Prepared for Colorado Department of Public Health & Environment (CDPHE), Hazardous Materials and Waste Management Division, Contract RX FEA HAZ01000046, January 31, 18 p., 50 figures, 6 tables, and Appendices A through C. [TDS Project No. 0020] [TDS Files]
- TDS Consulting Inc., 2002b, Compiled Basis Trace-Metals (TMs) Data, WWTP Facilities, Upper Clear Creek Watershed: Technical Memorandum to Ron Abel, CDPHE-HMWMD, Vicki Coppage, UCCWA, and Erick Oppelt, CDPHE-WQCD, October 4, 1 p. transmittal and attached table. [TDS Project No. 0201] [TDS Files]
- TDS Consulting Inc., 2004, Upper Clear Creek Watershed, Trace-Metals Data Assessment, Clear Creek/Central City Superfund Investigative Area, 2004


UCC Watershed Plan – Appendix E

Addendum: Prepared for Clear Creek Watershed Foundation on Behalf of Clear Creek County, U.S. Forest Service, and U.S. Environmental Protection Agency, November 22, 4-p. Executive Summary with 7 figures and 1 table; 12 tables and 24 figures. *[TDS Project No. 0411-2] [TDS Files]*

- TDS Consulting Inc., 2005, Upper Clear Creek Watershed Plan: 319-Grant Final Report, Phase-I Work Tasks, Prepared for the Upper Clear Creek Watershed Association (UCCWA) on Behalf of the Colorado Department of Public Health & Environment (CDPHE), Water Quality Control Division (WQCD), September 27, Executive Summary, 10 sections (sections 6 through 8 are pending completion, Phase 2), 6 figures, 30 tables, and Appendices A through F. [TDS Project No. 0405]
- Upper Clear Creek Watershed Advisory Group (UCC-WAG), 2001, UCCWAG Technical Final Report: Compiled and edited by H.L.O. Huyck, T.D. Steele, and R.L. Jones, June 25, 79 p. and Appendices A through D. [TDS Files; LRCWE CCC 247]
- Upper Clear Creek Watershed Association (UCCWA), 2002, Review Comments, Draft TMDL Assessment, Clear Creek Segment 2: TMDL Subcommittee, Transmittal Letter dated May 31 (1-p.), 8 p. [TDS Files]
- U.S. Environmental Protection Agency (USEPA), 2005, Section 303(d) Total Maximum Daily Load (TMDL) Waterbody List (Regulation #93): Letter to Chris J. Wiant, Chair, CDPHE Water Quality Control Commission (WQCC), June 3, 3-p. transmittal letter, Enclosure 1 Responsiveness Summary to Public Comments on EPA's Partial Disapproval of Colorado's 2004 Section 303(d) Waterbody List (12 p.), and Enclosure 2 Revised Review of Colorado's 2004 Section 303(d) Waterbody List. [TDS Files]
- U.S. Environmental Protection Agency (USEPA) and Colorado Department of Public Health & Environment (CDPHE), 2004, Record of Decision, Clear Creek/Central City Superfund Site, Operable Unit #4, Gilpin and Clear Creek Counties, Colorado: September 30. [TDS Files]
- Water Quality Control Division (WQCD), 2002 (revised), Colorado Total Maximum Daily Load and Wasteload Allocation Guidance: February, 16 p. [TDS Files]
- Woodling, J.D., Gasaway, M.S., and Dominguez, J.M., 1998, Clear Creek Biological Monitoring Program: Colorado Division of Wildlife (CDOW), December, 26 p., 9 tables, 17 figures, and Appendix 1. [TDS Files]
- Woodling, J.D. and Ketterlin, J.K., 2002, Clear Creek Monitoring Program, October 1995 through March 2001: Colorado Division of Wildlife (CDOW), March, 27 p., 8 tables and 15 figures. [TDS Files]

_

)

MA 45:e3:8 4005/05/9 ,DWG.8532_MA39T8/sqsM/MT8.550_0411/:

Technical Memorandum

Date:	May 11, 2006			
То:	Anne Beierle, UCCWA Chair Ed Rapp, CCWF President	e-Mail: <u>abeierle@ci.golden.co.us</u> e-Mail: ccwfountation@clearcreekwireless.com		
Copies:	Katie Fendel, LRCWE Chris Crouse, UCCWA Sec./Treas.	e-Mail: <u>fendel@lrcwe.com</u> e-Mail: <u>uccwaoffice@clearcreekwireless.com</u>		
From:	Tim Steele, TDS Consulting Inc.			
Subject:	Upper Clear Creek Watershed Plan • September 2005 (Revision 2)			
	2006 Addendum – Remedial Action Priorities			

This Addendum to the **Upper Clear Creek Watershed Plan** highlights the importance of several near-term, high-priority mining-related nonpoint source (NPS) remediation projects. The implementation of these projects is intended to achieve attainment of current as well as ultimate water-quality standards (targets) by the year 2012. The **Watershed Plan** provides a detailed inventory of known NPSs as well as some estimate of associated trace-metals loadings. These aspects, along with comparison with current and ultimate stream standards, serve as the basis for prioritizing remediation projects as well as for estimating anticipated benefits of remediation for achieving loads reductions for those contaminants of concern included on the current 303(d) list of impaired stream segments. Related work is currently ongoing for various projects identified in the OU4 RI/FS in the North Fork Clear Creek subwatershed by the CDPHE (2006) and this critical, high priority remediation is incorporated herein by reference.

The remedial-action priorities being considered for the near-term in this Addendum focus on trace-metals loads reductions that benefit the attainment goals (water-quality stream standards) for the lower reach of stream segment 2 (mainstem Clear Creek downstream from West Fork Clear Creek) and all of segment 11 in the upper Clear Creek watershed. It is our belief that implementation of high-priority NPS projects will result in attainment of water-quality goals in these segments and that this might be achieved through priority actions (both Superfund OU4 and 319-grant projects) by the year 2012.

Although applicable stream standards are set for year-round conditions, the **Plan** also discusses potential future modifications to the standards for discrete high-flow and low-flow seasons of the year for streams in this watershed. This, however, does not affect the overall intent of attainment of water-quality targets through remediation as described in the **Plan**. The linkages between stream segments should be recognized; specifically, load reductions through remedial actions benefiting upstream stream segments also will benefit stream segments that are directly downstream.

Accordingly, five projects are described in some detail in this Addendum that should facilitate achieving this attainment goal in the main stem of Clear Creek. These have been designated in currently proposed or planned projects and involve the following mines, subwatersheds, or areas:

- 1. Gilson Gulch Subwatershed,
- 2. Castleton Mine Dump (upper Virginia Canyon),
- 3. Trail Creek Subwatershed,
- 4. Maude Monroe and Donna Juanita Mines, and
- 5. North Empire Creek Subwatershed.

The Watershed Plan's screening process results (see Plan pp. 3-4 through 3-6) delineated and discussed in detail two high-rank and two moderate-rank priority areas recommended for near-term remedial actions. As noted above and in the Plan, the current ongoing OU4remediation project is high priority and will support attainment in stream segment 11 and 13b. (It is noted that additional NPS clean-up in the North Fork, possibly supported by 319 grant money or other funding, will also be needed to fully achieve current water quality standards in segment 13b.) Descriptions of the rationale and other aspects of each of these other proposed or planned projects being included to further support attainment goals, all but one of which are located within these priority-ranked areas, are given in the following sections. Remediation of the Gilson Gulch subwatershed is now added as a top priority, for the reasons given above and due to the more recent waste-pile/flow characterization results, as referenced below.

1. Gilson Gulch Subwatershed

A remediation-related characterization and feasibility study for this subwatershed was completed in 2005 by TDS Consulting Inc. Conditions in this subwatershed adversely impact water-quality conditions in the upper part of stream segment 11 (mainstem Clear Creek below the Argo discharge). In this investigation, waste-rock piles were characterized geochemically and flowing stream reaches and adits were sampled. A hazard-ranking system used elsewhere for assessing mining impacts led to a prioritization of which piles should be remediated through effective use of BMPs. This study served as the basis for the PIP for this subwatershed (CCWF, 2006) currently awaiting approval by the CDPHE and USEPA. Using zinc as the trace-metal indicator, the Watershed Plan identified stream segment 11 as not achieving ultimate (underlying TVS) standard, even with upstream planned remediation actions (see Plan Table 4-6). The Plan hadn't identified this area for its initial ranking, primarily because little study had been done in the Gilson Gulch subwatershed until the characterization and feasibility study, which was completed at about the time of the Plan itself. It now is better known the potential trace-metals loads contributions from this subwatershed, and it has been included in the Plan's schedule for implementation of NPS management measures (TDS Consulting Inc., 2006, p. 6-1). The proposed Gilson Gulch PIP will result in further TMs loads reductions to increase the incremental load reduction (estimated additional 40-percent reduction needed for zinc) to achieve the water-quality attainment targets.

2. Castleton Mine Dump

The CDMG has completed a feasibility study of the Virginia Canyon subarea (Herron and others, 2001). This initial study identified the Castleton Mine Dump area as one of the highest priority areas needed for remediation (CDMG, 2006). This comprehensive study was supplemented by another CCWF study in 2002. Virginia Canyon adversely impacts the lower reach of stream segment 2 (mainstem Clear Creek above the Argo discharge). Some remediation work was completed in this subwatershed during 2005. Ambient levels of copper and zinc for this impaired stream segment of the upper Clear Creek watershed currently do not achieve the low-flow TVS standards (see **Plan** Table 1-3). As in the previous case, when using zinc as the trace-metals indicator, significant additional TMs reductions are needed in order for this stream segment to overcome its non-attainment of the zinc target (see Plan's Table 4-6). The proposed remediation of the Castleton Mine Dump piles will benefit the overall remedial-action strategy for NPS attainment.

3. Trail Creek Subwatershed

Impaired water quality conditions in Trail Creek warrant it to be included as one of two major TMs loads contributors to the lower part of stream segment 2 (mainstem Clear Crcek). The other named major contributor, the Big Five Tunnel, has already been remediated through 2005 Superfund clean-up actions. Tailings in the Trail Creek subwatershed were mentioned in the Superfund ROD, but not in the OU (UCC-WAG, 2001, Table 17) as a candidate for CERCLA-supported remediation. The Trail Creek subwatershed has been characterized using more limited data than available for other monitoring sites in the upper Clear Creek watershed. Intermittent historical data for Trail Creek have been tabulated (see Plan Table 2-2, 8 samples). An initial year's worth of data collected by the CDPHE provided a seasonal water-quality characterization and resulted in this stream being added to its 303(d) list for several trace metals (Cd, Cu, Pb, Mn, and Zn). Moreover, it has been designated as a separate stream segment (9b) because of its impaired quality. Beginning in 2005, Trail Creek near its confluence with the mainstem Clear Creek (site CC-31) has been added to the UCCWA-USEPA supported TMs monitoring-program component; these recent data confirm the characterization provided by the earlier CDPHE data. Beginning in 2006, a supplemental TMs-characterization study has been implemented (Clear Crcek Consultants, Inc., 2006), funded by the CCWF. Copper from this source is believed to be a major contributor to current attainment problems in the vicinity of Idaho Springs. The focus of this study involves Trail Creek and the lower reach of stream segment 2 and upper segment of stream segment 11 (mainstem Clear Creek segments), and this water-quality/hydrologic data-collection study, supplementing the UCCWA-USEPA program, will provide useful information on streamflows and water-quality conditions for this subwatershed. CCWF is currently developing a technical and cost proposal for the Trail Creek subwatershed, using the data and information outlined above.

4. Maude Monroe and Donna Juanita Mines

The Donna Juanita Mine tailings were identified in UCC-WAG (2001, Table 17). Unfortunately, any data have not been compiled for the Maude Monroe Mine and are quite limited for the Donna Juanita Mine (see Plan Section 2, p. 2-5, for TMs/HRD

characterization). However, these mines are located within a "moderate-rank" priority area for remediation in the Watershed Plan (see pp. 3-4 and 3-6). Recently implemented remedial action involving principally the Big Five Tunnel and pond, along with Trail Creek remediation, are estimated to result in TMs loads reduction of less than 10 percent. Obviously, additional remediation in the lower reach of stream segment 2 (mainstem Clear Creek) is critical for attainment of overall attainment of water-quality targets for this stream segment as well as stream segment 11 downstream (see Plan Table 4-6). Accordingly, watershed stakeholders have identified these mines for near-term remedial-action consideration. There is a partial remediation proposed for this area to place a retaining wall along the stream as a Supplemental Environmental Project (SEP) in lieu of fines for the spill of petroleum products and subsequent fish kill at Dumont by the Iowa Tank Lines. This partial remedial action is scheduled for late summer 2006.

5. North Empire Creek Subwatershed

The Aorta Tunnel discharge and the North Empire Creek subwatershed in general have been characterized by the USEPA (1994) as well as the CDPHE (1995). Highlights of these initial characterization studies have been incorporated into the Watershed Plan (see Plan Table 2-2 and Section 2, p. 2-4, for TMs/HRD characterization). Some remediation has taken place at the Minnesota Mine site on Lion Creek. A repair of this prior work has been authorized and funded by EPA Region 8 and the USFS for the summer 2006. As a component of this repair further monitoring and characterization will be accomplished on Lion and North Empire Creeks by CCWF. Although the North Empire Creek is included in an unlisted stream segment 6 (tributary of West Fork Clear Creek), it impacts the lower reach of West Fork Clear Creek as well as stream segments 2 and 11 downstream in the mainstem Clear Creek. Accordingly, watershed stakeholders have identified this subwatershed for near-term future consideration of remedial actions for further reduce TMs loads. An analysis by Clear Creek Consultants, Inc. (2004) indicates that this subwatershed is highly susceptible to eventmean concentrations of total phosphorous and total suspended solids three orders of magnitude higher than adjacent subwatersheds, due to rock and tailing concentrations of phosphates and rock degradation.

In summary, this 2006 Addendum – Remedial Action Priorities to attain stream standards through NPS trace metals reductions in Clear Creek segments 2 and 11 has been approved by a majority of UCCWA voting members and is hereby incorporated into the original 2005 Upper Clear Creek Watershed Plan notebooks. The attainment objective date is year 2012 considering implementation and completion of the high-priority projects (both Superfund OU4 and additional NPS projects for North Fork Clear Creek subwatershed and NPS-319-Grant projects for other areas) benefiting water-quality conditions for stream segments 2 and 11 (mainstem Clear Creek).

File: UCCWPlan2006 AddendumFINAL#2.doc

Additional References:

- Clear Creek Consultants, Inc., 2002, Clear Creek Baseline Data Analysis—Memorandum prepared for the Clear Creek Watershed Foundation, October 4, 2 p. and 1 figure.
- Clear Creek Consultants, Inc., 2006, Clear Creek Copper Loading Study: Letter Proposal to Clear Creek Watershed Foundation, January 30, 2 p.
- Clear Creek Watershed Foundation (CCWF), 2006 (pending approval), Gilson Gulch Orphan Mine/Orphanage Remediation: Project Implementation Plan (based upon NPS Project Proposal dated 11/15/05), Submitted to CDPHE-WQCD, March 16, 6 p. and 8 attachments.
- Colorado Department of Public Health and Environment (CDPHE), 2006, Clear Creek/Central City Superfund Site, Sediment Control and Mine Remediation Project P-8609-S: Scope of Work, Hazardous Materials and Waste Management Division (HMWMD), Exhibit A to Contract with Tetra Tech, Inc., 10p.
- Colorado Division of Minerals and Geology (CDMG), 2006 *(pending approval)*, Castleton Mine Dump Remediation: Project Implementation Plan (based upon NPS Project Proposal dated 11/15/05), Submitted to CDPHE-WQCD, March 29, 7⁺ p. and attachments.
- U.S. Environmental Protection Agency (USEPA), 2005a, Sustained Commitment Needed to Further Advance Watershed Approach: Internet Website, http:// www.epa.gov/oig/reports/2005/20050921-2005-P-00025.pdf
- U.S. Environmental Protection Agency (USEPA), 2005b, Handbook for Developing Watershed Plans to Restore and Protect Our Waters: EPA 841-B-05-005, Nonpoint Source Control Branch, Washington, DC 20460, October, 13 sections, 2 appendices, glossary, and bibliography. [CCWF Library]