Data Transmittal Report

To: Upper Clear Creek Watershed Association (UCCWA)

CC:

From: Mike Crouse

Date: 11-March-2024

Re: Stream Gaging Report Water Year 2023 – Clear Creek at Kermitts (Station CC-40)

Clear Creek Consultants (CCC) has been retained by UCCWA to operate and maintain the stream flow gaging station on Clear Creek above Johnson Gulch near Kermitts (Station CC-40). The UCCWA and others utilize streamflow data from this gage to assess water quality conditions in Clear Creek. From October 1994 to October 2005, the gage was operated by the U.S. Geological Survey and records were published in annual reports. CCC has operated the CC-40 gage and published the flow data annually since 2006. This report presents data collected at the gage from October 2022 to October 2023.

Data Collection and Evaluation

A continuous recording Campbell Scientific data logger was used to measure a submersible pressure transducer to develop the water stage height record for CC-40. The 15-minute average stream stage height was recorded during ice-free periods extending from approximately March to November. The transducer was calibrated using an electronic tape gage referenced to the base of the gage enclosure box. An outside staff gage mounted in the stream is also utilized as a stream stage height reference.

Continuous recording water quality probes operated at the CC-40 gage for water quality monitoring were discontinued in 2022.

Operation of the CC-40 streamgage requires the development and maintenance of a discharge rating to define the relationship between stream stage height and discharge (flow). Data collection methods and procedures used at the CC-40 streamgage follow standard USGS guidelines and protocols (USGS, 1982 – Measurement and Computation of Streamflow, Volumes 1 and 2).

Direct measurements of stream flow using a current meter are required each year to evaluate this relationship at various seasonal flow rates. Direct current meter discharge measurements are taken each season to maintain the discharge rating. Measurement results are available upon request. The discharge rating is evaluated annually to assess the accuracy of the rating in comparison to the direct measurements. The measurements are plotted on log-normal distribution using a computer program for comparison to the existing rating. If necessary, either shift adjustments are applied to the data before calculating discharge, or the rating is revised to maintain accuracy.

Three separate rating curves were developed and utilized for the CC-40 gage representing low flow (20-70 cfs), medium flow (70-300 cfs), and high flow (300-2,000 cfs). The streamflow rating table for CC-40 is attached.

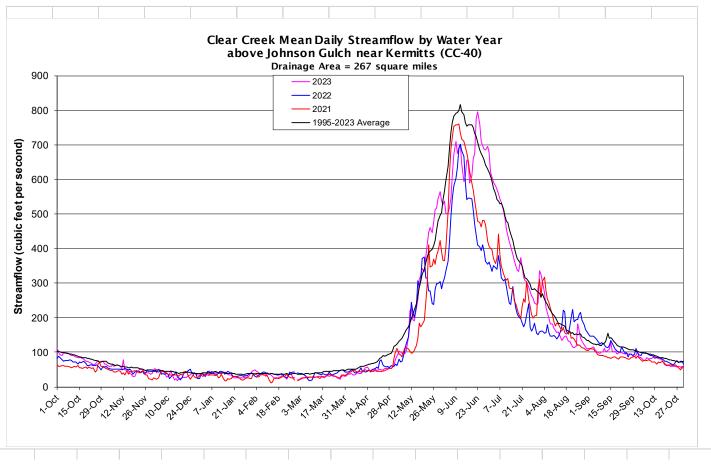
The stage height record was compiled for review, plotted, and any necessary corrections were made based on field calibration measurements. The final stage height record was then imported into an Access database program for the computation of discharge and to archive data.

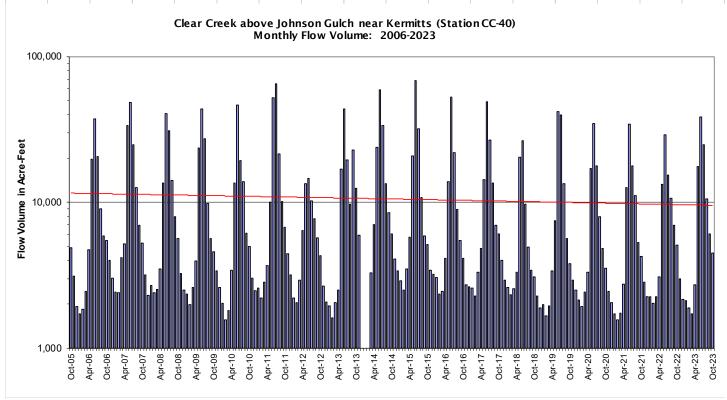
The discharge rating equations were applied to the corrected stage height data for the computation of discharge. A stream flow computation program was used within the Access database framework to compute the 15-minute discharge. Statistical output summaries from the database program include mean daily flow; mean hourly flow; and maximum and minimum instantaneous flow by month.

Results

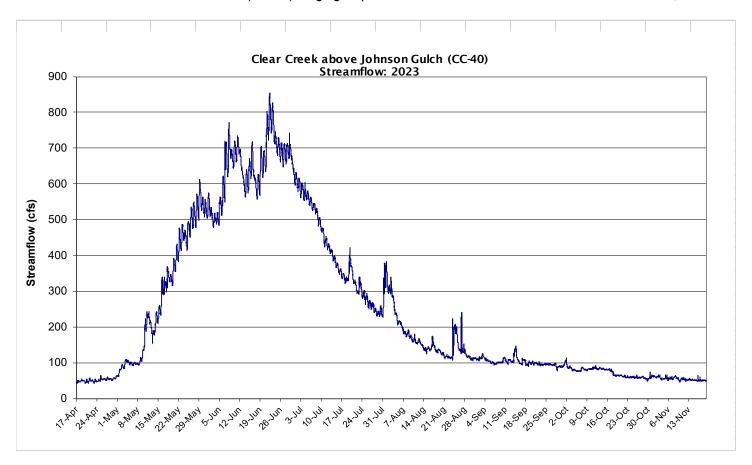
The gage was audited approximately monthly during ice-free periods to check calibration against the gage reference points and make any necessary adjustments to maintain accuracy. Routine maintenance of the gage included removal of silt accumulated in the stilling well and instrument maintenance.

Stream flow results during the operation season are available in real-time on Clear Creek Consultants web site for fishermen, rafters and other water users to obtain current stream flow conditions at clearcr.com/flow-pages.html.


The CC-40 mean daily discharge results for this reporting period are presented in the attached table, along with the flow hydrograph. The gage is not operated over the winter months (November-March) because the gage rating is not accurate during heavy ice-cover conditions which occur each year at CC-40. Significant channel ice accumulation renders the flow rating useless during the winter. When possible, wintertime flows are estimated based on Clear Creek flows at the Golden USGS gage (CC-60) adjusted using the average flow ratio for the winter low-flow period.


Minimum Clear Creek flows occur in winter, with maximum flows typically in June. Minimum flows typically range from 20 to 40 cfs at CC-40. Mean daily flows in June and July 2022 were below average, and near average the remainder of 2022. Peak snowmelt flow in 2022 was 779 cfs on 11-June, similar to 2021.

CLEAR CREEK ABOVE JOHNSON GULCH NEAR KERMITTS WY 2023


Provisional Data - Subject to Revision

						ata - Sub			looll				2023 OCT 89.6 103 86.5 83.3 79.1 76.7 78.3 84.7 80.2 81.7		
		upstream Jo		ch		E 39 44'47"			308"						
		REA 267 s	•			EVATION	/210 ft-msi								
ERIOD (OF RECOR	D Octobei	1994 to C	urrent Yea	r										
		DISCHAR	CE IN CI	IDIC EEE	T DED CE	COND W	ATED 1/EA	в осто	DED 2022	TO OCT	ODED 20				
		DISCHAR	GE IN CU	IRIC FEE	I PER SE	COND, WA			BEK 2022	10 001	OBER 202	23			
	2022	2022	2022	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP			
1	111	65.1	48 e	37 e	43	22 e	33 e	62.5	526	621	335	112	89.6		
2	99.4	60.8	53 e	36 e	47	e 21 e	36 e	80.2	538	605	326	109	103		
3	93.3	59.7	41 e	35 e	48	21 e	37 e	88.8	500	591	305	113	86.5		
4	90.8	59.4	50 e	34 e	46				502	581	272	116			
5	98.0	64.0	50 e	32 e					519	572	229	107			
6	97.5	58.7	45 e	43 e					545	558	213	103			
7	99.4	61.0	44 e	44 e					617	544	198	99.3			
8	96.8	63.7	43 e	40 e	36	e 27 e	40 e	96.4	673	533	182	97.1	84.7		
9	93.1	61.9	27 e	41 e	35	e 28 e	38 e	106	710	510	181	100	80.2		
10	91.1	58.6	30 e	41 e					674	487	170	101			
11	89.7	50.7	36 e	40 e					692	457	163	111	83.0		
12	87.4	79 e	46 e	38 e	38	e 29 e	49 e		702	437	156	102	86.4		
13	85.3	50 e	34 e	39 e	34	e 29 e	56 e	194	644	421	159	106	82.2		
14	84.7	49 e	20 e	41 e	30	e 30 e	57 e	191	592	403	145	109	83.7		
15	83.1	47 e	23 e	42 e	26	e 31 e	50 e	227	610	384	135	129	82.3		
16	84.0	38 e	17 e	41 e					655	364	140	103	80.3		
17	82.2	36 e	23 e	37 e				311	649	351	146	100	79.9		
18	80.5	31 e	23 e	35 e				321	589	338	146	104	73.7		
19	73.2	29 e	27 e	34 e				343	610	333	133	94.7	64.0		
20	73.4	40 e	28 e	29 e	31	e 32 e	46.8	334	661	374	131	98.7	64.0		
21	72.4	46 e	26 e	26 e	32	e 31 e	48.7	375	674	346	124	98.1	64.4		
22	69.8	50 e	27 e	25 e				410	774	317	116	98.4	61.0		
23	67.6	53 e	31 e	26 e				445	795	307	114	95.7	59.2		
24	64.4	50 e	34 e	26 e				461	760	304	117	94.1	59.2		
25	65.7	42 e	38 e	26 e	39	e 30 e	53.4	445	709	288	181	95.6	60.1		
26	70.8	40 e	39 e	26 e	39	25 e	53.5	478	698	276	164	95.4	59.0		
27	75.7	40 e	38 e	27 e				512	686	262	141	94.4	58.1		
28	69.3	40 e	36 e	27 e 28 e				516	685	256	133	94.5	58.8		
29	74.4	36 e	35 e	28 e		31 e		544	696	242	121	87.9	57.2		
30		38 e						564			115	89.1			
31	73.9 64.8	36 e	35 e 36 e	30 e 37 e		32 e 30 e		537	677	238 243	110	o9. I	52.9 60.0		
31	07.0		50 6	37 e		30 e		331		240	110		30.0		
OTAL	2562	1498 e	1086 e	1063 e	951	864 e	1373 е	8881	19364	12543	5301	3057	2272		
/IEAN	82.7	50 e	35 e	34 e	34 6			286	645	405	171	102	73.3		
ИΑХ	111	79 e	53 e	44 e	48			564	795	621	335	129	103		
ΛIN	64.4	29 e	17 e	25 e	21 6			62.5	500	238	110	87.9	52.9		
AC-FT	5,082	2,971 e	2,154 e	2,109 e					38,409	24,879	10,515	6,064	4,507		
				INS	ΤΑΝΤΔΝ	EOUS MEA	SUREME	NTS							
MAX FLOW	v 119						63.8	612	853	650	382	146	113		
DATE	1-Oct						25-Apr	30-May	23-Jun	1-Jul	1-Aug	15-Sep	2-Oct		
IIN FLOW							42.0	59.6	479	228	106	77.5	49.0		
DATE	28-Oct						17-Apr	1-May	3-Jun	31-Jul	31-Aug	29-Sep	30-Oct		
							T								
= estimate	ed during ice	affected period	d using averag	je seasonal f	low ratio of (Clear Creek at (Golden (CC-6	0)							
= partial d	lata	N/	A = not availab	le											
											2/1/-	Class Casal	Camanita		

GAGE HEIGHT	STREAMFLOW
(feet)	(cubic feet per second)
3.3	33
3.4	41
3.5	50
3.6	61
3.7	78
3.8	93
3.9	109
4.0	128
4.1	150
4.2	175
4.3	203
4.4	235
4.5	271
4.6	312
4.7	304
4.8	327
4.9	352
5.0	379
5.1	406
5.2	435
5.3	466
5.4	498
5.5	532
5.6	567
5.7	604
5.8	643
5.9	683
6.0	726
6.1	770
6.2	816
6.3	864
6.4	914
6.5	966
6.6	1020
6.7	1076
6.8	1135
6.9	1195
7.0	1258
7.1	1324
7.2	1391
7.3	1462
7.4	1534
7.5	1610
	1610 Clear Creek Watershed Associa

